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Abstract

A large group of natural hazards ( e.g. forest fires, earth quakes)
are showing scaling law behavior even if they differ in size by mag-
nitudes. As it turns out these class of systems can be described by
Self-Organized-Criticality and it is indeed possible to relate them to
the critical behavior of phase transitions. Using the example of forest-
fires the question of how (well) the theoretical phase transition models
fit the experimental results shall be studied.
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1 INTRODUCTION 2

1 Introduction

The Forest-Fire model belongs to the class of Self-Organized-Critical (SOC)
systems, which are governed by a slow driving energy input and burst (avalanches)
of dissipative outputs resulting often in a fractal structures. These systems
were introduced by P. Bak et al. [2] in 1987 using the example of a sandpile
model. These SOC models can be applied to many different fields, famous
applications are for instance: earthquakes, solar flares, co-evolution, forest-
fires and more. In addition they show scaling laws and are related to critical
phenomena.

In this paper, starting from the context of self organized criticality the de-
velopment of a forest-fire model will be explained, resulting in a prediction
of key features and scaling behaviors for forest-fires. Although the obtained
theoretical model was mostly studied using cellular automata simulations
[1, 8, [] it is possible to relate the theoretical results to experimental data
using records forest-fires [7, 6] 3.

2 The Forest-Fire Model

In order to understand forest-fires, a theoretical model has to be established.
The first model proposed by P. Bak et al. [I] will be described first. I will
give a short overview about Self-Organized-Critical phenomena (SOC), since
the described models are strongly connected to SOC. As it turns out how-
ever, the first proposed model obeys no criticality, which was shown by P.
Grassberger et al. [5] and W.K. Mossner et al. [§] using cellular automate
computer simulations. Adding an other degree of freedom however (a light-
ning probability) makes the system critical. This model will be described
and scaling laws will be derived.

Let us start with Self-Organized-Critical systems.

2.1 Self-Organized-Criticality - SOC

In 1987 P. Bak et al. introduced the idea of Self-Organized-Criticality [2]. He
stated that dynamical driven systems with many spatial degrees of freedom
evolve to unstable states. These unstable states are dissipating their energy
in bursts (avalanches). He also introduced a simple cellular automata model -
the sandpile model - to understand the key features of SOC. In the sandpile
model sand grains continuously are added to a grid. If the slope between
two lattice sites exceed a certain threshold, the number at the larger site is
reduced by four, while adding one grain of sand to each neighbor. He was able
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to show that this model exhibits power law scaling in spatial and temporal
distribution, e.g. the number of clusters D(s) of size s scaled with some
exponent 7: D(s) ~ s77. And for the distribution of lifetime he obtained
D(t) ~t.

In addition one can make an analogy to equilibrium critical phenomena [10]:
Let us assume, that the current of incoming sand is the external magnetic
field while the magnetization is given by the flow away from the a maximum.
If the slope O is larger than a critical value ©¢, the system is unstable and
there will be a flow - hence a magnetization. This is the analogy to the
ordered state. If ® < ©¢ no flow will be observed (disordered), unless an
external field (stream of sand) is applied. This analogy helps to understand
the system. It is however important to notice, that the physical principles
are different from usual critical phenomena.

Summarizing his results, a system which exhibits SOC will be at a critical
point over a large scale of external parameters. In addition it is important to
notice that it is not necessary to tune a certain external parameter in order to
obtain criticality, the system rather ’drives itself’ towards the critical point
- hence Self-Organized-Criticality.

Further explanations and scaling laws can be found [10, 2].

2.2 The P. Bak - Model

As mentioned before a SOC system consists of constant uniform energy in-
put, the ability to ’store’ this energy and dissipate it in bursts (avalanches)
through spatial fractals. P. Bak et at. introduced a forest-fire model in order
to demonstrate scaling and fractal energy dissipation [I]. The model consists
of a cellular automata on a lattice with the following rules:

i Trees are randomly grown with a probability p at empty sites at each time
step.

ii Trees, which are on fire will burn down at the next time step.

iii At the next time step, the fire will spread to all nearest neighbors.

In addition he introduced a correlation length £(p) which basically states
over which length scales, lattice site are correlated (we will later define it as
the root of the mean squared distance from the center of mass of a forest
cluster). The correlation length scales with an exponent v as &(p) ~ p~.
This relation can be understood, considering the following energy conser-
vation argument [I]: The total number of grown trees are L. Given the
correlation length &, we know that the number of areas which are uncorre-
lated should be about 2“—5 (volume of system / correlated volume). Using the
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fractal dimension D, the number of trees burned in one domain(fractal) is
3

Since the number of grown trees should be equal to the number of burned
trees we conclude:

Ld

L'p = @SD s ¢=pTD (1)

Hence v = d—%‘

Given this scaling relation he expected a critical behavior for p — 0 and
argued that if the correlation length is larger than the system size, the fire
will die out, while it will be sustained if the correlation length is smaller than
the size of the system. This can be understood as follows: If the probability
of growing a tree is small (large correlation length according to , we expect
that the average time to grow a tree is larger than the average time to burn
a tree. Clusters of trees will therefore be burned completely, hence the fire
dies out. If on the other hand the probability of growing a tree is large, new
trees can be grown at the boundary of tree clusters before the fire reaches
these boundaries and the fire will be sustained.

The main results of this paper were, that this forest fire model can be re-
garded as a system at a critical point, which should yield scaling law behavior
and that slow uniform energy input (grows of trees) result in fractal energy
dissipation.

2.3 Why the Forest-Fire model by P. Bak et al. is not
critical

As described in the previous section, P. Bak et al. suspected a critical behav-
ior for p — 0. Several computer simulations by P. Grassberger et al. [5] and
W.K. Mossner et al. [8] however showed that the system is rather determin-
istic than critical in this limit. Their approach was as followed: First they
observed that for large growth probabilities the system is dominated by many
fire fronts, which building bubble like structures. These bubbles expand and
merge with other bubbles to form nuclei for new bubbles. In addition they
observed that this scenario was governed by a frequency proportional to 713.
Second, they found that if p is very small, the bubble structure vanished
in favor of a regular spirals (see figure . Again the size and the distance
between the spirals was of the order of }17. This fact seemed to indicate a
deterministic character of the system rather than a critical. In order to proof
their claim, they looked at several properties of this system:

Spatial structure: The scaling of the number of fire sites with distance r
from a fire site D(r) could be shown to obey the scaling D(r) oc rP~!
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proposed by P. Bak et al. However it appeared that P. Bak et al.
studied accidentally an artificial "horizontal’ state, which was created
by a poor choice of size and boundary conditions of the simulation and
are presumably vanishing in the thermodynamic limit.

Temporal structure: In order to understand the temporal behavior of the
system W.K. Mossner et. al. looked at the mean fire density as a
function of time. They found that the mean fire density shows periodic
behavior at a frequency f which gets more distinct for small p. This
again is an indication of a deterministic system.

In addition they computed the temporal fire-fire-correlation function
G(7) and found that G(1) o cos(2mf7)e™*". Where A\ oc p'® and
f o< p*? in 2 dimensions. If one measures time in units of 1/f one
obtains G(7) o cos(2n7)e " with 7 = 7f. If p — 0 the damping
term will be approximately be one and one obtains an pure oscillation.
This is another indication for a deterministic character of the system.

Scaling behavior: If the system is a critical point for p — 0 it should be
invariant under a transformation in length and time: a transformation
in length and time yields the same system with a new growth probabil-
ity p. This invariance should yield a scaling relation for the normalized
probability n(s) of finding a tree cluster of size s , n(s) oc s~ where
b is a transformation parameter (e.g. * — 2’ = bz). Since the system
is not exactly at p = 0 a crossover effect is expected in this scaling law
if the cluster size exceeds a certain value s,,,,. An appropriate scaling
function C can be introduced and the scaling relation becomes:

o =c( ) s @)

Smax

First , they tried to collapse the data obtained by their simulations to
verify the scaling relation. This was however not possible. In addition
they tried to show that s, o< p~» and that the radius of a forest
fractal R scales as R o s'/*. Both attempts failed. Furthermore they
observed that n(s) rather shows two distinct areas where the system
behaves in a different manner.

Obtaining these results they concluded that the forest-fire model is not a
self organized critical system. In addition they were able to come up with
a deterministic model for the spiral state of the system, describing very well
the observed behavior.

In the last sentence of this paper [§] they commented that adding a second
parameter - a lightning probability f - to the system will make the system
critical. This model will be described in the next section.
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Figure 1: Fig. 1 from [§]: Steady state of the Bak-forest-fire model for
p = 0.005 and L = 1000. The forest is black, white is empty. One can nicely
see the spiral structure.

2.4 The Drossel-Schwabl-Model

In the previous section, we obtained that the forest-fire model proposed by
P. Bak et al. is not critical, because the system behaves deterministic. We
would have expected to observe all sizes of fires up to the correlation length
if the system would have been critical. Instead it was found that there is
a typical length (1/p), which determines the size of fires. Let us try to
understand why this is so [4]: First, consider a small cluster of trees which
is not burning. This cluster will grow until it merges with a cluster which is
on fire. Hence there is a threshold (given by a specific length) for a cluster
to actually catch fire. To determine this length scale, one has to remember
that the fire burns constantly in the steady state. This means that only
these tree clusters will burn constantly which are growing fast enough. And
since the growth of a cluster is proportional to its circumference, only cluster
larger than a certain size (actually with a diameter of about 1/p) will burn
constantly. This argument shows that there are only fires of a certain size. To
obtain criticality we would want to have fires of all sizes. This is the reason
why B. Drossel et al. introduced a lightning probability f to the system,
which will ignite smaller forest clusters [4]. The forest-fire model therefore
consist of the rules mentioned above and the additional rule:



2 THE FOREST-FIRE MODEL 7

ao b
E 1.0 + 2
'E;- - E
g g
2 4ol =

.3_[:] -

0.0

Figure 2: FIG. 2 from [4]: Average number of tree clusters and average
cluster radius as function of cluster size in d = 2 and f/p = 1/70. The
simulations yield tau = 2 and pu = 2

iv A tree which is not burning (and has no burning neighbors ), will catch
fire with a probability f.

First let us try to understand the behavior of this system by assuming that
a forest cluster which is on fire will burn down immediately. In this case we
can understand that the system is fully described by the fraction f/p: If the
lightning probability is increased by a factor, more trees will burn on average.
To obtain a system with the same dynamics the growth probability has to
be increased by the same factor. Hence, there should be only one important
parameter f/p. Now, let p denote the average tree density and s denote the
average number of trees destroyed be a lightning stroke, i.e. the average size
of a tree cluster. s can be expressed as:

average number of trees Pempty Lép

o average number of lightning strokes ~ p L4 f

-(f) =2

This relation represents a power law for 5 oc (f/p)~! in the limit (f/p) — 0
as long as p < 1 in this limit.

(3)

As we have seen, we expect certain scaling behavior. Can we use this
result for the original forest fire model? The answer is yes, if the time which
it takes to burn a cluster of size s, T'(s) is much smaller than the time to
add (grow) new trees to the cluster, which is proportional to 1/p. Hence as
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long as T'(5) << % our results should still be valid and critical behavior is
expected.

Let us now get a more precise by defining R(s) as the square root of the
mean quadratic deviation from the center of mass of a cluster of size s. Since
trees in one cluster are correlated, it makes sense to define the correlation
length as & = R(s). It follows that £ o< (f/p)~". In addition B. Drossel et
al. are defining the number of tree clusters of size s between [s, s + ds] as
N(s)ds.

Under a length rescaling x — x/b the functional form of N(s) and R(s)
should not change, i.e. is invariant - this means a ’'coarse grained’ system
looks essentially the same and one can follow the following scaling laws:

N( ) a C 3 5 T>2 (4)
s) o< s X e
C Snim 1()g 1(Smax) T =2

R(s)ocsl/”é( i ) (5)

Smaw

where $pqp o (f/p)~" is the maximum size of a cluster.
C(z) and C(z) are scaling functions with:

1 z<<1

C(r) = { (6)

0 z>>1

similar for C(z) .
Using equation [T, 5] and the definition of the correlation length one can
deduce:

A=vp and d=p(r—1) (7)

For instance: The volume of the system L? is :

LY~ /ds R(s)* N(s) ~ /ds sYE 577 C(5/5maz) C(5/Smaz)
(8)
= sl-rd/u /dx 2P C(x) C()

max

The integral is just a constant and since $,,4, — 00 for (f/p) — 0 one has
to assume 1 — 7+ d/p = 0.
Using the relations above and the fact that:

[ ds s*N(s)
[ ds sN(s)

S =
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one can derive all exponents in the limit 7'(s) << ]lo and obtains:
A=1 T=2 w=d v=1/d (10)

(for detailed calculations see [4]).
Now, can one actually observe these scaling relations? Many computer simu-
lations were performed and the exponents and scaling relations could indeed

be verified (see figure [2).

3 Experimental Results

We now have a good understanding about the theory and models of forest-
fires. However it is reasonable to ask whether the found properties of the
theoretical model apply to real forest-fires. First, one has to ask what quan-
tities can be measured in real forest-fires? The most obvious quantities are
the size s of a forest-fire and its relative occurrence. These two quantities
are related trough equation [4

This relation was studied amongst others by B. Malamud et al. [7], by C.
Ricotta et al. [9] and by A. Corral et al. [3].

C. Ricoota et al. used a wildfire catalog consisting of 9164 forest fires form
1986 to 1993 in north Italy to verify the relation between occurrence and size
of fires. Their results are shown in figure [3] They were able to fit a scal-
ing law over a many orders of magnitude and obtained a critical exponent
T~ 1.446/2.

However their scaling behavior differs for small and large fire sizes: They
argue that is due to the non-homogeneous landscape and the human inter-
vention, which reduces the occurrence of large fires. In addition they argue
that many small fires might not have been recorded. They conclude that the
found scaling behavior is valid over large ranges and note that the ignition
mechanism of forest fires are more complicated, since 90% of these fires were
caused by humans.

Similar analysis was done by B. Malamud et al. in 1998. They looked
at several datasets, acquired in landscapes with different structure and cli-
mates. Their results are shown in figure ] They obtained very good scaling
behavior and exponents in the order of 1.31 —1.49. In addition they followed
that given enough data about small and medium fires it is possible to make
statements about the average size of fires up to 50 years. Furthermore they
did computer simulation and observed a finite size effect for small values
of f/p: The number of large fires increases, since the forest clusters spread
nearly the whole lattice and large clusters are dominant. This effect could
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Figure 3: Fig. 1 from [9]: Number of wildfires in north Italy from 1986-1993
from [9]. The regression yields a fractal dimension D=1.446.

actually be mapped to a real phenomena - the "Yellowstone effect’. Since the
Yellowstone National Park had a strictly policy of suppressing fires (small
lightning probability f) until 1972, a large number of dead trees accumulated
which resulted in huge fires in 1988.

Lastly, I will discuss experimental results for the occurrence of forest-fires
in time. This was extensively studied by A. Corral et al. [3]. They studied the
spatial occurrence as well as the temporal occurrence at forest fires recored
in Italy and obtained similar results found by C. Ricotta et al. for the spatial
case. However the temporal case is interesting since data collapse is observed
nicely. First they defined a waiting time probability density between to fires
D(r,s.), where 7 is the time and s. a threshold (i.e. only fires larger than
this threshold are considered). The results are shown in figure [5| (a) As it
turned out the slope of the waiting time probability density depends upon
the threshold. However rescaling by the mean rate of fire occurrence R(s.)
yield:

D(r,5.) = R(s.) F(R(s.)7) (11)

where F(z) denotes a new scaling function. Plotting D/R versus R7 col-
lapsed the data (see figure 5| (b)). This collapse means that the waiting time
has the same shape but on different scales. But why do we observe scale in-
variance in time? The answer is as follows: Define the number of fires larger
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Figure 4: Fig.2 from [7]: Noncumulative frequency-area distributions for
forest-fires for different regions A,B,C,D. See [7] for further information.

than s. per unit time - the instantaneous rate as r (¢, s.). The waiting time
density reads than as:

D(r,5.) — ﬁ / dr D(r, s.|r) P(r) (12)

where D(1,s.|r) is the conditional probability density of having a waiting
time at time t given a rate r. The probability P(r) of having a rate r can
be expressed as P(r) = r p(r,s.) where p is the rate density. Since the
probability distribution of fire sizes D(s) is stationary (does not change with
time) a transformation of the rate r(t,s.) = P(s > s.|s > sq) r(t,s0) =
p r(t, so) will yield a transformation of the density as p(r,s.) = W.
Hence the density p obeys a scaling law p(r, s.) = f(r/p)/p with some scaling
function f(z). Equation (12| reads as:

1 2 q(rr T -1
D(T, Sc) = m/d“” 9( )f( /P)p (13)
p? -
= ffoy F 7 = RGP (pr)

with some scaling functions F(x) and F(x). In the first line it was assumed
that D(7,s.|r) =r f(r7) obeys a scaling relation if the fire-size distribution
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Figure 5: FIG. 3 from [3] (a) Probability density distribution for different
cutoff sizes s.. (b) Data collapse.

is stationary. And R(s.) = pR(so)
Summarizing a scaling for the instantaneous waiting time yield to non-
instantaneous waiting times, if the size distribution is stationary.

4 Conclusion

As a conclusion, we have seen that a well studied and understood theoretical
model in the context of self-organized-criticality exists. SOC systems are
usually characterized by a uniform energy input and dissipative avalanche
(fractals) and can be described using scaling theory. The theoretical model
can make statements about scaling behavior which can be observed in nature.
Not only for the reason of modeling real forest-fires, but also for the purpose
of understanding self-organized-criticality and its relation to basic concept of
nature, the forest-fire model is an interesting system to study.
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