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Abstract

Inspired by empirical studies researchers have tried to model var-
ious systems like human populations, the World Wide Web or elec-
tric power grids by random graphs. Here we first examine different
properties of random graphs(both undirected and directed) having ar-
bitrary degree distributions using the generating functon formalism.
We present some empirical data about the structure of random graphs
in real life especially the WWW. Then we modify our results to in-
clude site and bond percolation to address questions about the onset
of large scale connectivity and the formation of a giant component in
random graphs. This point corresponds to a phase transition. We use
this information to examine questions about the onset of epidemic or
the robustness or fragility of a network to random or targeted deletion
of nodes.



1 Introduction -Motivation and some general
considerations for the model

A random graph is a collection of points or vertices with lines or edges con-
necting them at random. Mathematicians have been studying random graphs
for a long time, starting with the work by Paul ErDos and Alfred Renyi. The
problem of applying their results to real life networks is as follows:

If we assume each edge in the graph to be present with an independent prob-
ability p, for a graph with N vertices where each vertex is connected on an
average to z edges, then p = z/(N — 1), which is approximately equal to
z/N in the limit of large N. From here and now on py is used to denote the
probability that a randomly chosen vertex on the graph has degree k, i.e. it
is connected to k other vertices. Hence,
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However, real world networks (for e.g. the WWW, where each page is a
vertex and the hyperlinks are edges, a directed graph) are not poissonian.
In the specific case of the internet we see that the graphs have power law
behaviour as explained later. Hence it is necessary to modify these results
for graphs with arbitrary degree distributions and also on the nature of the
graphs (directed or undirected). Then we generalize our results to include
site and bond percolation on these graphs.

Now,let us understand why it is "useful” to study such networks. First we
translate the language of random graphs to real world networks and then ad-
dress questions about them. The electric power grids, airline networks and
the Internet are examples of networks whose functionality depends on the
pattern of interconnection between their nodes, so it is important to study
such networks and their fragility to the removal of nodes. We study the
question of connectivity by determining when a giant cluster with large scale
connectivity forms.

Nodes on the graph are considered to be occupied if they(power grid or
router) are functioning properly. We can consider occupation probability as
a function of vertex degree. We observe percolation clusters on the graph
as the occupation probability is varied. We see that if the structure of the
network is chosen appropriately we can make the network resilient to random
deletion of nodes.

If we want to check the connectivity of the network to failure of links(transmission
cables, optic fibres) between the nodes we can study the problem of bond
percolation on the network. For the problem of disease propagation, occu-
pied vertices on the graph are people who are already infected or susceptible
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to the disease. Links represent contacts capable of spreading the disease and
can be assumed to be occupied with some probability representing that only
some contacts actually lead to transmission. In the language of percolation
phase transition there is a point as a function of occupation probability when
a giant component(with occupied vertices) forms. In the language of power
networks this is when the graph achieves large scale connectivity,so it works
efficiently as a distribution system, in the language of disease propagation
this is the point when a large portion of the population is infected and this
point corresponds to the outbreak of an epidemic. As, in the case of phase
transitions in physical systems we will see that it makes sense to say a phase
transition occurs only when the system size is made infinitely large, that is
the number of vertices N tends to infinity.

2 Generating Function Method

2.1 Undirected Graphs

In this section we outline the generating function method that is used to
investigate these graphs. More extensive treatments can be found in [2] and
[3] from where the formalism has been taken. Let Go(z) be the generating
function for the probability districution that a vertex on the graph has degree
k with probability p,. This will be our most fundamental generating function.

Go(x) = Y prat (2.1)
Go(1) = 1 (2.2)

Here the second equation follows from the normalization of the probability
distribution pg. This property will continue to hold for all other derived
generating functions unless otherwise specified. The kth probability can be
determined by taking the kth derivatives of our generating function as follows.
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2.1.1 Moments

We can obtain information about the probability distribution by calculating
the moments. The first moment for example gives us the average degree of
a vertex in a graph having degree distribution p,. Higher moments can be



calculated by taking higher derivatives.
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2.1.2 The law of Powers

If the distribution of a property k£ of an object is given by a generating func-
tion, then the distribution of the total of £ over m independent realizations
of the object is generated by the mth power of the distribution. We can
understand this by an illustrative example. Let us expand GZ(z).

[Go())* = piprr’z" = popo + (pop1 + p1po) + (pop2 + Prp1 + papo)a”® + -
jk

Hence we see that the coefficient of the power of 2™ correctly gives the prob-

ability that the sum of the powers of the vertices in n.

2.1.3 Other Properties

Let us determine the distribution of the degree of the vertices we arrive at by
following a randomly chosen edge. Such an edge arrives at the vertex with
probability proportional to kp,. Hence the correctly normalized distribution
is generated by
Sy ket Gilo)
2 kpr Go(1)
If we want to find the distribution for outgoing edges from the vertex we
arrived at by following the randomly chosen edge, we divide by x to allow
for the vertex we arrived by

(2.7)

Gi(z) = = (2.8)

The probability that each of these vertices connects with the original one
goes as N~!, which we neglect in the limit of large N, this limit as earlier
commented is going to be very important in determining the position of the
phase transition and its existence. Hence, making use of the power law, the
distribution of the number of second neighbours is generated by

> pelGi@)]" = Go(Gr(a) (2.9)
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The average number of second neighbours are given by
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Figure 1: Schematic representation of the sum rule for connected components
of vertices reached by following a randomly chosen edge

2.1.4 Component Sizes

Let Hi(x) be the generating function for the distribution of component sizes
which are reached by choosing some random edge and following it to its
ends. We exclude from H;(z) the giant component which forms at phase
transition, that is taken care of later on. Except at phase transition when a
giant component appears a component has a finite size. The probability of
a component having a closed loop goes as N ! which we neglect in the limit
of large N. The component can be imagined to be generated by the treelike
structure as shown in Fig.(1), with either just the first vertex or the vertex
with one or more component connected to it be edges each having the same
distribution. Hence H;(x) must satisfy the consistency condition

Hi(z) = G (Hi(z)) (2.11)

Similarly, if we take a randomly chosen vertex the generating function for
the component size at the end of each vertex is

In principle we can solve these equations given the probability distribution,
but solving them analytically is almost impossible, they are generally, solved
numerically.



2.1.5 Giant component and Phase transition

Although we cannot solve eqn’s 2.11 and 2.12 analytically we can determine
the mean component size

(s) = Ho(1) =1+ Gy(1)H,(1)

Hy(1) = 1+G(1)H (1)
Go(1) 22

S(s) = 14—02 _—14
< > 1—G1<1) Z1 — 22
We see that this expression diverges when G (1) = 1. This is the point of
the Phase transition at which the giant component first appears.
When there is a giant component Hy(1) < 1 =1—S. Here, S is the fraction
of the graph formed by the giant component. S =1 — Gy(u) where
u = H;(1) is the smallest non-negative real solution of u = G;(u). At this
point the correct average size (barring size of the giant component) is

B Hé(l) B 2u?
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Also, at the phase transition, Newman has shown in [3] by expanding H;*
around 1 that H; and Hy both scale as (1 — z)? for x — 1 where 3 = % He
also shows that near the phase transition the probability distribution has the
form P, ~ s~®e~s* where s* is a cutoff parameter related with the radius of
convergence of the generating function. He also shows that a =1+ 8 = %
These results match with the results for the Poisson graph distribution.

2.2 Directed Graphs

The calculation for directed graphs is very similar so we just briefly look
at the basic formulas. The generating function has now two indices j- the
in-degree and k the outdegree.

G(z,y) = ijkxjyk (2.14)
jik

The indegree must be equal to the outdegree, hence,

Z(j —k)pjr = 0
jk
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Go and G4 (Fp and F}) generate the number of outgoing(incoming)edges leav-
ing(arriving) a randomly chosen vertex and the number leaving the vertex
reached by following a randomly chosen edge. These functions are given as

@) =G@1). F) = %% )
Goly) =G(Ly).  Gily) = é% ) (2.16)

Other properties are derived as above. The internet with the pages as vertices
and the links as edges is an example of a directed Graph. As before, the
position of the phase transition is given by when G}(1) = 1. It is equally
valid to say that the giant component occurs when F;(1) = 1.

3 Network structure of the Internet and some
Results validating the above Formalism

There has been a lot of recent activity about the network structure of the
internet. The results and the graphs referred to in this section are taken from
[3] and [4] reproduced in [3]. Similar results are given in [7]. This data has
been gathered by ”crawls” of search engines across the internet. This means
this data is accurate as far as the out degree is concerned however to get an
accurate estimate of the in degree we would have to crawl the whole WWW|
which is impractical. However certain results which depend only on the out
degree are tested. First let us show that the data collected is evidence of
the fact that real life data about random graphs is not Poisonnian but in
the case of WWW it has a Power Law behaviour. The distributions are well
plotted using a power law of form pp = C(k + ko)~ . [4] explains this using
a combination of stochastic dynamical growth and a difference in ages and
growth rates of the sites. 3 shows clearly the disparity in the in and out
degrees due to the mode of data collection. Using the generating function
formalism described in the previous section, we determine the fraction of the
graph S which is reached by the giant strongly connected component. This
is given as S;, = 1 — Go(1 — Si,). Thus (1 — Sy,) is a fixed point of Go(x).
Using numerical simulation we find that S;, is 53%. This matches closely
with the direct measurements reported by Broder et. al. which says that
49% of the web falls in the giant component. The simulations can be done in
two ways. In the first way we can generate a particular degree sequence for
the graph by taking N integers at random from the probability distribution
by which the vertex degrees are governed. Then we average over the results
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Figure 2: Log-Log plot of
Data from Alexa and InfoSeek
Crawls which cover 259,794
and 525,882 pages respectively. Figure 3: Probability distribution
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of all graphs that can be obtained using that degree sequnce. This we average
over a large number of implementations of the degree sequence. So, this is
akin to the canonical ensemble in Statistical mechanics. In contrast we, can
choose a particular probability distribution for degrees and choose N numbers
from that distribution provided that N is very large. Then we just average
over all graphs generated by that degree distribution. This is somewhat
like the microcanonical ensemble.Although it seems to be a reasonable
validation of the formalism, one must note that in the simulations
performed by [3] the assumption was made that pj; = p;py, i.e. the
in and out degrees are correlated, something there is no reason to believe.

4 Modification of Model to include Percola-
tion

In the introduction we have already motivated the need to introduce per-
colation to study network resilience in random graphs. The introduction of
percolation just modifies certain terms in the generating function formalism.
First let us briefly go over them. Here we concentrate only on undirected
graphs. The discussion and results in this section follow closely[1]. We begin
by examining site percolation when occupation probability is an arbitrary



function of vertex degree. So, py is the probability that a randomly chosen
vertex has degree k and g is the probability that that it is occupied. Then
the generating function is given by

Fo(z) = Zpkqwk (4.1)

As before the distribution for outgoing edges reached from a given vertex has
a probability distribution generated by

_ >k kpegra®! _ Fy(z)
Zk kpy, z

Now, Hi(z) is the generating function that one end of a randomly chosen
edge leads to a percolation cluster of a given number of occupied vertices.
The cluster has zero vertices if the vertex at the end of the edge in question
is unoccupied. This happens with probability 1 — Fj(1), or it can have k
other edges leading out of it with a distribution Fj(x). Thus H;(x) satisfies
a consistency relationship given below. The probability distribution for the
size of a cluster to which a randomly chosen vertex belongs is generated by

Fi(z) (4.2)

Hy(z) = 1—F(1)+aF [Hi(2)]
Ho(z) = 1— Fy(1) + xFy [Hy()] (4.3)

For the case of joint site/bond percolation with uniform site and bond per-
colation probability ¢, and ¢, the generating functions are

Hi(z) = 1—qsq+ qsqpzG1 [Hi(2)]
Ho(x) = 1—qs+ qqprGo [Hi ()] (4.4)

where Go(7) = 3, pra* and G (z) = Gy(x)/z are the generating functions
for vertex degree alone as before. Note that we get the results of the pre-
vious sections by setting ¢s and ¢, to 1. Let us try to analyze uniform site
occupation probability with ¢, i.e. we set g, = g and ¢, = 1. Again as in
previous sections, we get for mean cluster size

(s) = Hy(1) = q+qGo(1)H;(1)

_ qGy(1)

- {1 1o qGi(l)}
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Here g. marks the point at which the percolation phase transition happens
and the giant component first forms. In the language of disease propagation
this is the point at which the epidemic first happens. More extensive work
in this direction has been done by Newman in [8]. For networks this marks
where the network achieves large scale connectivity and can work as an ef-
fective distribution network. As shown before the Internet has a power law
distribution for vertices. It seems several other networks like the collabora-
tions of scientists also have a similar distribution but with an exponential
cutoff as given below.

pr = 0 for k=0
— Ck"e *for k> 1

The Internet can then be taken as a particular case with k — 0o.This data
is now used for simulations(The exponential cutoff is included so that the
generating function is finite.). The results of these calculations are repro-
duced below in Figure. 4. We see that for 7 = 2.5(close to the exponent for

0
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Figure 4: Probabilty that a randomly chosen vertes belongs to a cluster
of s sites for k = 10,7 = 2.5,q = 0.65. Percolation threshold for 7 =
1.5(circles),2(squares),2.5(Triangles)

Internet Data) and x = 100 ¢. = 0.17. This means more than 80% of the
nodes need to be removed before we can destroy large scale connectivity.

Another question with recent interest is the connectivity of the network when
nodes having high degree are progressively removed. Let us suppose we re-
move all nodes having degrees greater than k. This has been studied in [5]
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and [6].
dr = Q(kmax - k) (46)
The size of the giant component S is determined using the following equations
S=1-=Hy(l) = Fo(1)— Fo(u)
u = 1—F 1)+ Fi(u) (4.7)

. The results of the simulation for pure power law distributions are as shown
in Figure.5 From the top part of 5 we see that only a small portion of the
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Figure 5: Size of the giant component with power law distribution 7 =2.4(cir-
cles), 2.7(squares)3(triangles)

vertices (less than 3%) needs to be removed to destroy the giant component.
But from the bottom part we realize that k,,,, must be really small, so that
all vertices with degree greater than almost 10 must be removed for 7 = 2.7.
In this sense the network is stable.

5 Conclusion

In the report we have followed some work done regarding the network struc-
ture of graphs which are completely random in every aspect barring their
degree distributions. We look over both directed and undirected graphs and
try to obtain results using generating function methodology. The results
from simulations of the equations agree with analytical calculations. How-
ever, there is not much experimental data to validate the above models. The
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only available data is regarding the the size of the giant component in WWW,
which is reported in Section 3. However, there are two problems regarding
this data. One, we do not have enough information about the in -degrees.
Two, we assume that the in and out degrees are uncorrelated. Also, from
the point of view of disease propagation, we should note the that study is
primarily kinetic, in the sense that we determine the structure of the network
at the point of spread of an epidemic. However, for the study to be useful it
must be dynamic too in the sense that we must determine the evolution of
the structure of the network in terms of experimentally determinable quanti-
ties. Such models exist in the way of STR and SIS models, and such studies
have been done in [8] and are reviewed in [2].

Such problems are very important because thay provide us with tools with
which to analyze networks which are of everyday use to us, like telecommuni-
cation or airline routes. These tools will enable us to design robust networks
which would still have connectivity with respect to removal of nodes, acci-
dental or for example by sabotage. However such studies would be helped
by collection of new data.
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