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Abstract: This paper explains a model that shows that the conventional
debate over whether earthquakes obey a Gutenberg-Richter Distribution or
a Characteristic Distribution at a specific fault could be unfounded. The
model, in the mean-field approximation, predicts a mode-switching phase and
a Gutenberg-Richter phase that gives rise to the possibility of time-dependent
seismic behavior. A qualitative phase diagram is obtained in parameter space
and a second-order transition point is identified. Comparison with paleosiesmic
data is made and discussed.
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1 Introduction

Regardless of Voltaire’s declaration that “Opinion has caused more trouble on
this little earth than plagues or earthquakes,” loss of life due to opinion can-
not be stopped with the advent of innovative science. Earthquake prediction
has remained elusive amongst scientists, but provides motivation for trying to
understand earthquakes’ underlying physical mechanism. In relation to this, in
the mid-twentieth century, Gutenberg and Richter proposed their well-known
empirical law to describe the number of observed earthquakes to their magni-
tudes,

log10(n(> M)) = a− bM, (1)

where n(> M) refers to the number of events with magnitude greater than M ,
a is a constant and b is also a constant that is approximately equal to 1. This
kind of equation is referred to as a frequency-size distribution as it relates the
number of earthquakes observed to their magnitude. Seismic patterns that obey
this power law fall into the category labeled the Gutenberg-Richter Distribution.
This implies that earthquakes of all sizes are seen between the largest magnitude
earthquakes. There is another view, however, within the seismic community.
The idea amongst the opposing school is that there exists a period of relaxation
or quiescent behavior between the largest magnitude earthquakes. During the
relaxation period, earthquakes do occur, but their magnitudes are relatively
weak and limited to foreshocks, aftershocks and smaller background events.
This model of seismic activity is referred to as the Characteristic Distribution.
A diagram of the two distributions are shown below[8]:

Figure 1.1: Log-Log Plot of Number of Earthquakes, n, versus Magnitude, M, for
Gutenberg-Richter and Characteristic Distributions (Ma measures the magnitude of

the largest aftershock)
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Recently, data has been obtained from individual fault zones, suggesting that
the aforementioned distributions are geometry-dependent[8]. It was found that
faults with irregular geometries follow the Gutenberg-Richter Distribution up
to the largest magnitude earthquakes, while fault zones with regular geometries
obey the power-law behavior only for low-level earthquakes. These smaller
events occur in periods of time between intervals of much larger magnitude
earthquakes. There are bascially no observations of intermediate sized earth-
quakes at these faults.

In this paper, a theoretical model developed originally by Ben-Zion and Rice
and improved upon by Dahmen et al. is examined[2][3]. The model permits
faults that solely obey Gutenberg-Richter behavior, but these are stationary on
time scales. The interesting results of the model yield a spontaneous switching
back and forth from a Characteristic phase to Gutenberg-Richter phase and
vice-versa[1]. This suggests that the question as to whether or not earthquakes
obey the Gutenberg-Richter or Characteristic Distribution could be incorrectly
posed. The question fails to address the role that time plays in a particular
fault’s seismic activity. The model seeks to unify observations of the Gutenberg-
Richter Distribution and the Characteristic Distribution under one umbrella, as
they are currently accounted for by separate theoretical frameworks[9]. This is
accomplished by identifying a mode-switching phase and a Gutenberg-Richter
phase for small earthquakes and identifying a second-order critical point. Be-
cause, according to the model, the time scale it takes to cycle between the two
phases is on the order of thousands of years, the avaliable data is limited, but it
does appear to corroborate the time-dependent predictions of the model. Most
of the data obtained is from paleoseismic, historical and geological records from
the Middle East, specifically Israel, and East Asia. The data seems to indicate
that time does play an important role at some faults, as one can see periodic
episodes of different distributions of earthquake activity. The model, compari-
son with data, and results are dicussed below.

2 The Model

To build the model, the heterogeneous fault zone is taken to be in the (x, z)
plane and divided into N discrete cells. Thus, the N brittle patches are mapped
onto the plane in between the two tectonic blocks that move with velocity vx̂
far away from the fault. The figure is below[9]:
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Figure 2.1: The Tectonic Plane is Divided into N Cells

The local stress on each cell is given by the following relation:

τi = J/N
∑

j

(uj − ui) + KL(vt + ui), (2)

where uj is the offset of cell j in the x-direction, J/N is the coupling due to
elasticity and KL is the effective loading stiffness of the bulk that surrounds
the fault patch. Now, a mean-field approximation is made, and its validity is
justified by the fact that elastic stesses are long-range for two dimensions and
higher. Hence, we may write Eq.(2) as:

τi = Jū + KLvt− (KL + J)ui, (3)

where ū = (
∑

j uj)/N . The physical interpretation of this equation is as follows.
In the intial state, the fault is relaxed. The external loading increases the
stress on cell i, τi, linearly as a function of time. When the stress at cell
i reaches a certain threshold level denoted τs,i, called the local static failure
threshold, the cell slips and the stress reduces to an arrest stress, τa,i. In
this model, arrest stresses vary from cell to cell and are randomly selected
from a parabolic distribution. Similarly, the failure stresses are selected from a
distribution as outlined in the next section. This is done to adequately represent
the macroscopic spatial inhomogeneities of the fault system. Now, since the
stress in a given cell drops from τs,i to τa,i during failure, the surrounding cells
must absorb the released stress. We note the respective change in stresses by:

δτi = τs,i − τa,i (4)

δτj = (c/N)(τs,i − τa,i) i 6= j, (5)
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where c ≡ J/(KL +J) defines the conservation parameter, which measures how
much stress remains in the overall system after cell i slips. Eq.(4) gives the
stress loss in cell i, whereas Eq.(5) gives the stress redistributed to the other
cells. At this point, the model does not yet sufficiently take into consideration
the weakening effects of the earthquake. In other words, when a cell fails, it is
assumed to weaken due to the slipping process. Therefore, the failure threshold
is reduced from its static failure τs,i threshold to a dynamical failure threshold,
τd,i ≡ τs,i − ε(τs,i − τa,i). The parameter ε is bounded by 0 and 1, i.e. 0 ≤
ε ≤ 1, and measures the importance of the dynamical weakening effects. It is
immediately clear that the dynamical weakening has an affect only if a given cell
is to fail more than once. In this model, an earthquake is observed if the stress
transfer defined in Eq.(5) causes the neighboring cells to fail, and an avalanche
effect is observed. This avalanche effect is observed until all the cells come to
a value of τi ≤ τs,i. This model also assumes that the external loading remains
constant during the occurence of an earthquake, because the time scales of the
earthquakes are short compared to the extrenal loading. Another assumption
that goes into this picture is that between earthquakes, the cells are to heal
causing the threshold for failure to return to the static value, τs,i.

Now, to simplify the upcoming statistical analysis of the model, it is useful
to introduce normalized stresses,

si ≡ 1− τs,i − τi

〈τs,i − τa,i〉 (6)

sa,i ≡ 1− τs,i − τa,i

〈τs,i − τa,i〉 (7)

sd,i ≡ 1− τs,i − τd,i

〈τs,i − τa,i〉 = 1− ε(1− sa,i), (8)

such that failure occurs when si = 1 and 〈sa〉 = 0. The angled brackets (〈〉)
indicates an average over all cells.

The statistical analysis undertaken in obtaining the stress distributions and
earthquake sizes is rather involved, hence the results are summarized and dis-
cussed below.

2.1 Properties of the Gutenberg-Richter Phase

The Gutenberg-Richter phase is possible in both segments of the phase diagram
in Figure 3.1. To obtain a distribution for the earthquake sizes in the Gutenberg-
Richter phase, it is necessary to engage in statistical analysis. To account for the
heterogeneities of the fault, an exponential distribution is used to compare the
stress differences between cells, Xn, and the stress redistribution after failure
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of the first n cells, Yn. It is important to note that the distribution of stress
differences in the Gutenberg-Richter phase is P (Xn) ∝ exp(−Xn), and it takes
into regard the fact that each cell does not fail more than once during an
event. Hence, the dynamical failure value does not play a role in obtaining the
earthquake size distribution. The means and variances of these two distributions
(P(Xn) and P(Yn)) are combined (since they obey linearity) to give a mean,
µ, and variance, σ2, for Zn ≡ Xn − Yn. The physical interpretation of Zn

can best be understood through examining its behavior. For Xn < Yn, the
redistributed stresses are greater than the stress gaps, which only occurs during
an earthquake. For Xn > Yn, there redistributed stress is not enough to push
the remaining cells “over the edge” to cause the avalanche effect leading to an
earthquake. It can readily be seen therefore that the point Zn = 0 is the point
that determines whether or not an earthquake will occur. The problem thus
reduces to a biased random walk problem where Zn = 0 corresponds to the
point of first return to the origin after a certain number of steps. The final form
of the probability distribution of the earthquake sizes is given by:

p(GR)(n) =
A(GR)

n3/2
exp

{
−n(1 + n/N)

ncGR

}
, (9)

where ncGR is a cutoff size that is approximately given by ncGR ≈ 2(1 − c)−2

and A(GR) is a normalization constant. The cutoff size is obtained from the
mean and variance of the biased random walk problem in the following way
ncGR = 2(µ2+σ2)/µ2, which gives the expected dependence on the conservation
parameter. This probability distribution gives the number of cells that will fail,
n, during an event, i.e. the size of the earthquake. The cutoff size, ncGR,
diverges in the limit that c ↗ 1.

There remain two important results that need to be discussed concerning
the Gutenberg-Richter phase. One is the stress distribution which is given by:

p(GR)(s) =
∫ s

−∞
ρ(sa)

1− sa

dsa, (10)

where ρ(sa) is the parabolic probability density of the arrest stress and the
factor dsa/(1 − sa) = P (s ≤ si ≤ s + ds) comes from the fact that the stress
in a given cell can lie anywhere between the arrest stress and the failure stress,
i.e. sa,i ≤ s ≤ 1. The other important result is the persistence time, which
approximates the time it takes for the earthquake distribution to switch from
the Gutenberg Richter phase to switch to the Characteristic phase. The relation
is given by:

T(GR)→(CE) ≈ T0

C(GR),(CE)N
1/2

n
1/2
c,(GR)

exp

{
(1− ε)(1− ε + c)

c2nc,(GR)

N

}
, (11)
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where T0 ≡ 〈τs,i − τa,i〉/(KLv) is the average time it takes a cell to go from its
arrest stress to its failure stress due to the external loading, and C(GR),(CE) is a
factor that is on the order of unity. It is important to note the dependence of the
mean persistence time on the conservation parameter. These results enable one
to determine where the mode-switching occurs. In the Gutenberg-Richter phase,
if one observes an earthquake in which the number of cells that fail is greater
than (1−ε)N/c, this may alter the frequency-size distribution to a Characteristic
one. This is because the likelihood of all cells failing is dramatically increased
as the initially failed cells reach their dynamical stress value. This means that
a significantly large earthquake in the Gutenberg-Richter phase may lead to a
transition into the Characteristic phase.

2.2 Properties of the Characteristic Phase

Since much of the statistical analysis has already been summarized in the pre-
vious subsection, and the method is the same for this phase, the main results
are quoted and comparison with the Gutenberg-Richter phase discussed below.

For the Characteristic phase, one must take into consideration the effects of
the dynamical stress value because the cells are no longer likely to fail only once
as in the Gutenberg-Richter phase. Therefore the distribution of the stress gaps,
P (Xn), is no longer of the same form as in the Gutenberg-Richter phase. In the
Characteristic phase, P (Xn) ∝ exp(−Xn/(1 − ε)). However, the distribution
of the redistributed stresses after the failure of the first n cells, P (Yn), remains
the same. Following the same procedure as in the previous part, one obtains
for the distribution of earthquake sizes:

p(CE)(n) =
A(CE)

n3/2
exp

{
−n(1 + n/N)

ncCE

}
, (12)

where the cutoff size is given by, ncCE ≈ 2(1 − ε)2/(1 − ε − c)2. The stress
distribution is given by:

p(CE)(s) =
1

1− ε

∫ s

(s−1+ε)/ε

ρ(sa)

1− sa

dsa. (13)

Upon examining the size distribution, p(CE)(n), one can see that this diverges
in the limit that c ↘ (1 − ε). Unlike the cutoff counterpart in the Gutenberg-
Richter phase, though, this divergence cannot be observed. This is because the
Characteristic phase becomes vulnerable to a transition into the Gutenberg-
Richter phase. When c > c∗ ≡ (1+ε)−1, one can observe an instability from the
Characteristic phase into the Gutenberg-Richter phase. For all, c < c∗, though,
the Gutenberg-Richter phase is the only persistent phase. Upon examining the
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total redistributed stress per cell, S, one can immediately see why this is the
case. It is given by:

S =
c(r − (1− ε))

1− c
, (14)

where r = n/N is the fraction of failed cells. To ensure that the stress distribu-
tion retains the profile given by Eq.(13), it is required that S ≥ 1. Therefore,
when r ≥ r∗ = 1/c − ε, the Characteristic phase stress distribution, Eq.(13),
cannot be maintained, and the Characteristic Distribution is vulnerable to cross-
over into the Gutenberg-Richter Distribution. The relationship between r∗ and
c∗ is given by 1−r∗ = (c∗)−1−(c)−1. This means that when a significant number
of cells fail during background activity, the formerly bundled stress distributions
will be caused to break apart. This will consequently lead to a transition into
the Gutenberg-Richter phase.

The last important result is the persistence time, or the time predicted for
cross-over behavior, T(CE)→(GR), as this is a measurable quantity predicted by
this model. For the transition from Characteristic phase to the Gutenberg-
Richter phase, the persistence time is given by:

T(CE)→(GR) ≈ T0

C(CE),(GR)N
3/2

n2
c,(CE)

exp

{
(c− c∗)(1 + (c− c∗)/(c∗c))

c∗cnc,(CE)

N

}
, (15)

where it is assumed that c > c∗, because it is only in this regime that the
persistence time is defined. Because the persistence time is dependent on the
conservation parameter, a fixed conservation parameter of c = 0.73 was es-
timated to make theoretical predictions. With these values, the approximate
transition times are given by, T(GR)→(CE) ≈ 5,000 years and T(CE)→(GR) ≈ 20,000
years. It is important to note, however, that small variations in the conservation
parameter (≈ 0.04) lead to variations in the persistence times of approximately
1,000 years. This sensitivity is demonstrably a limitation of this model.

3 Identification of the Critical Point

For small earthquakes, as seen in Figure 1.1, there is always a power-law be-
havior. However, once earthquakes start getting larger, one can observe either
a truncated power-law behavior or Characteristic sized earthquakes. In this
model, these two phases are distinguished by the presence of the dynamical
failure stress, which is accounted for by the parameter ε. As ε → 0, the Char-
acteristic Distribution approaches the Gutenberg-Richter Distribution. This
suggests a critical point at ε = 0, c = 1, as this corresponds to the diverging
point for ncGR. In this limit, one has rare earthquakes of gigantic proportion,
but we are guaranteed Gutenberg-Richter statistics. In the context of critical
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phenomena, as ε → 0 we have an absence of a characteristic length scale, as the
statistics are scale invariant over all earthquake magnitudes. This is because
the Gutenberg-Richter relation is given by a power-law, unlike the Character-
istic Distribution, which is characteristic of a second-order critical point. Now,
it was seen above that the stresses on the fault clearly affected the outcome of
the frequency-size distribution. If one looks at effect of the spatially averaged
stress 〈τ〉, which can be tuned by tuning ε, on the criticality of the system, we
can realize three qualitatively different states. When compared to some criti-
cal mean stress, τcrit, we see that 〈τ〉 > τcrit, 〈τ〉 < τcrit and 〈τ〉 ≈ τcrit yield
distinct behaviors. 〈τ〉 > τcrit gives a supercritical fault that is given by a high
mean stress that frequently produces large earthquakes and recovers slowly to
repeated produce large events. This describes the Characteristic Phase, but
is vulnerable to the mode-switching mentioned above. 〈τ〉 < τcrit gives a sub-
critical fault where earthquakes are generally quite small and the system is
always far from the critical point. This is the Gutenberg-Richter Distribution
for small earthquakes. 〈τ〉 ≈ τcrit gives the second-order critical point where
Gutenberg-Richter statistics are obeyed over the entire range of the magnitude
of the earthquakes. These understandings in conjuction with the results ob-
tained from the previous section allows one to achieve the qualitative phase
diagram for these transitions given in the figure below:

Figure 3.1: The Phase Diagram in Parameter Space. The point A on the diagram
labels the critical point.

4 Comparison with Observations

While other data exists that suggest a time-dependence in earthquake activity,
the data obtained by Marco et al., Leonard et al., and Kyung et al. span the
largest periods of time and are therefore the most pertinent here [7][6][5]. The
results obtained by Refs.[7] and [6] are taken in Israel around the Dead Sea
Graben and the Arava Fault. We look first at the results obtained from the
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Dead Sea Graben. The data gives a 50,000 year window into the seismic activity
in this region. According to the results, each 5,000 - 10,000 years, there is a
change in the seismic activity. Half of these periods are characterized by the
presence of intermediate and large events, whereas the other half only exhibits
earthquakes of relatively small size with very few larger events[7]. At the Arava
Fault, one can see heavy faulting for a period of approximately 20,000 years,
consistent with a Characteristic Distribution, with quiescent behavior on both
time intervals surrounding the 20,000 segment. This corresponds approximately
to 15,000 to 35,000 years ago. The data after 15,000 years ago corresponds
more closely to Gutenberg-Richter behavior, although this last result is not
definitive[6]. Figure 3.1 displays these results below[4]:

Figure 4.1: Plot of Arava Fault Activity Over 60,000 Years

Lastly, we look at the data presented by Kyung et al[5]. Their results take into
consideration both volcanic and seismic activity, and they note that seismic and
volcanic activity show very strong correlations. Hence, most volcanic eruptions
only occur during periods of strong seismic activity. In this paper also, there
is a notable time-dependence in the behavior of the seismicity. Although sig-
nificantly shorter in time than the examined cases in Israel, there is a window
of approximately 400 years where the volcanic and seismic activity was much
more pronounced. Figure 3.2 summarizes their results below:
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Figure 4.2: Number of Seismic and Volcanic Events versus Year (Arrows Indicate
Volcanic Eruptions)

While the data is not conclusive evidence for the mode-switching model, there
is clearly some time-dependent behavior in the seismic activity[5].

5 Conclusion

The model presented here predicts a transition from a Gutenberg-Richter phase
to a phase that has a mode-switching behavior from Characteristic to Gutenberg-
Richter behavior and vice-versa as earthquakes get larger in magnitude. This
model also predicts a persistence time between for the mode switching. The
comparison with the available geological data is difficult because of the lengthy
persistence times, but there is clearly some time dependent behavior in the
seismic activity, which did not previously enter the debate when discussing
whether a fault obeyed a Gutenberg-Richter or Charactersitic Distribution.
Even if future data serves to disprove the model put forward, the realization
that time plays a role in a fault’s seismic activity is a new stance in the exhaus-
tive Gutenberg-Richter versus Characteritic Distribution debates. That being
said, there is no definitively observed phase transition that can immediately val-
idate this model. In fact, the second-order critical point can never be observed
because it requires complete stress transfer, which is unphysical in nature. An-
other limitation in this model is that the arrest stresses and the static failure
stresses were assumed to follow a statistical distribution and are therefore un-
coupled. Depending on the size of the contact between two tectonic plates,
however, this might not always be the case. Another assumption that went
into the work is that the model was two-dimensional. For earthquakes above
a magnitude of M6.3, however, it effectively becomes one-dimensional and the
mean-field approximation is no longer valid. With those assumptions in mind,
investigating this model’s relevance should include an examination of the cell
stresses and magnitude of the coupling constants at fault zones, since these pa-
rameters were phenomenological insertions into the theory. This will determine
the conservation parameter more accurately and deem whether or not its use as
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a parameter on the phase diagram is warranted. Future work could involve the
possibility of coexistence between the two phases. In the context of this model,
this would correspond to a region of the cells obeying a Gutenberg-Richter be-
havior while another region of the cells are in the mode-switching phase. This
would in effect lead to a frequency-size distribution that is some combination
of the two.
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