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Abstract

Understanding wetting phenomena involves a careful and detailed study of
the various surface tension forces, fluctuations and other contact line dynamics.
Cahn’s phenomenological theory combines the effects of short-range and some
long-range forces to produce a phase diagram and the two critical exponents that
characterize behavior near Tc. Experiments in the past two decades have been
able to test and verify the phase diagram predicted in Cahn’s theory. Further
the critical exponents obtained in experiment closely agree with those obtained
in theory. All of the theory and the results are presented here.
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I. Introduction

Whenever a drop of liquid is placed on the surface of a substrate, the liquid
is expected to evolve until it reaches an equilibrium state. This may require
the drop to either spread and cover the surface or remain as a drop or in some
cases even try to leave the surface. Such a process depends on properties of the
surfaces involved as well as the external conditions such as temperature. This
field is broadly categorized as wetting and spreading phenomena and aims to
determine how a liquid behaves on the surface of a substrate.

Wetting phenomena are widespread in nature and occur whenever a surface
is exposed to an environment. Understanding why and when a liquid decides to
wet a surface can greatly improve our knowledge of everyday events. Further,
this information can help in designing new materials and technology. This
review is aimed at providing a basic analysis of wetting and the different phase
transitions that arise during the process. The topics presented here are directly
related to the material covered in phase transitions course during the semester
and ties concepts of discontinuous and continuous phase transitions, and critical
exponents to an excellent real life scenario. Further, this is also a topic of current
and growing interest for both theorists and experimentalists. New developments
and recent experiments are constantly improving our understanding in this field.

Section 2 of this paper introduces the basic concepts of surface wetting, drop
spreading, the different phases involved and some of the details involved in the
study of surface wetting. In general wetting characteristics are quite complex
and require a very detailed analysis. This review is restricted to explaining
wetting phenomena in ideal equilibrium situations and providing a theory that
qualitatively explains the process. Section 3 focuses on the near equilibrium
state of a liquid deposited on the surface of another liquid or solid. This section
includes a model based on the intermolecular forces and a phenomenological
theory proposed by Cahn. From Cahn’s theory, one can obtain a phase diagram
that describes the various phase transitions between a wetting, dewetting and
a partial wetting phase. Most of the major theories introduced are followed by
experimental data that test the theoretical predictions.

2. Basics of wetting and spreading

2.1 Surface thermodynamics

When considering a liquid on a surface, there are three systems that come
into play; the liquid, the surface and the surrounding atmosphere which is re-
ferred to as the vapor. The relation between the various surface tensions and
the contact angle was given by Young [13] in Eq. 1

γSV = γSL + γLV cosθeq (1)

Here S, V and L refer to the substrates surface, the vapor and the liquid re-
spectively. θ is the contact angle as shown in Figure 1. Young’s equation in the
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above form describes the equilibrium situation when the surface tension forces
balance each other.

Figure 1: Young’s equation equates the surface tension forces at equilibrium

For a given set of surfaces, the corresponding θeq can be obtained from the
surface tensions involved. If, for instance γSV = γSL + γLV , then θeq = 0
and equilibrium corresponds to when the liquid is spread across the surface of
the substrate. This situation is referred to as wetting. The other two phases
that arise are the dewetting phase and the partial wetting phase. Though in
practice dewetting is rare, from a thermodynamic point of view both wetting
and dewetting are similar under exchange of surface and the vapor systems.
Thus, it suffices to consider and study the wetting state, which is characterized
by a macroscopically thick layer. In the partial wetting state, the drops on a
surface are surrounded by a microscopically thin film adsorbed at the surface.
The three wetting states are shown in Figure 2. In typical experiments film
thickness may range from a molecule to several molecules.

Figure 2: The three different wetting phases

One can define an equilibrium spreading coefficient Seq to help classify the
different wetting states.

Seq ≡ γSV − (γSL + γLV ) = γLV (cosθeq − 1) (2)

Seq above measures the difference between the surface free energy γSV and
its value in the case of complete wetting. Notice that in general Seq ≤ 0 and
Seq = 0 only in the case of complete wetting.

When a drop of liquid first encounters a surface, it is far from the equilibrium
state. An initial spreading coefficient may be defined as follows [4]

Si = γS0 − (γSL + γLV ) (3)
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Figure 3: The radius R as a function of time as given by Tanner’s law.

where γS0 is the surface tension of the dry solid substrate. If Si < 0, the
drop will have a finite contact angle θi and prefer to remain in a partial wetting
state. On the other hand, if Si > 0 the drop will tend to spread out and wet the
surface. An analysis of the adsorption equation shows that in general Si > Seq.
This implies, whenever Si < 0, this ensures that Seq < 0. Nothing definite can
be said about the sign of Seq, if Si > 0.

2.2 Drop spreading

This part covers some basics of drop spreading. As discussed above, when
a drop is generally placed on a surface, it is far from equilibrium (Si 6= Seq).
Consider the simple case of a small viscous droplet on a surface. Here small
implies that the drop radius is less than the capillary length lc, given by [1]

lc =
√
γ/ρg (4)

The capillary number gives the ratio of the viscous and surface tension forces.

Ca = Uη/γ (5)

Ca ≈ 10−5 − 10−3 in most spreading experiments, η is the liquid viscosity and
U = R

′
is the contact line speed. Combining these results one can obtain a

relationship between drop radius and time as give by Tanner’s law (Eq. 6) [12]
and shown in Figure 3.

R(t) ≈

[
10γ
9Bη

(
4V
π

)3
]1/10

∝ tn (6)

The rate at which a drop spreads is determined by the interplay between
the surface energies, gravity and dissipation. For small drops the surface free
energy also plays a role [1].

Fs = 4V 2γ/πR4 − πSiR2 (7)
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The first term in this expression corresponds to the liquid-vapor interface due to
the curved nature of the drop and the second term arises due the base area of the
drop being covered by fluid. By inspection of the above equation, it appears that
when Si > 0, spreading would lead to a reduction in the surface free energy.
However, in practice this reduction in free energy is not always converted to
macroscopic motion of the drop. Instead only some of the molecules near the
contact line may spread out creating a sort of thin precursor film around the
drop. This process uses up the energy that could have gone toward spreading
the entire drop. As Fs reduces, the effective radius R still increases. This causes
spreading coefficient to approach an equilibrium value slowing down the rate of
spreading. In order to compute the power n in Tanner’s equation (Eq. 6), one
has to measure the rate of energy dissipation near the contact line.

So far our analysis has concentrated on drops of small radius which lead to
Tanner’s law. However, as the radius grows, the assumption that it is much
less than the capillary length is invalid. The drop now resembles a pancake of
uniform thickness with curves just at the rims. The main driving force now is
gravity and when balanced against dissipation near the contact line one obtains
the critical exponent in R ∝ tn as n = 1/7 or n = 1/8. The exponent n obtained
from various procedures is tabulated in Figure 4.

Figure 4: Scaling exponents n, for R ∝ tn as obtained from different theories and corre-
sponding experiments [1]

3. Equilibrium wetting phenomena

Section 2 introduced the basic idea behind surface wetting and how a drop
of liquid is expected to spread as given by Tanner’s Law. The current section
concentrates on wetting under equilibrium conditions.

3.1 Long-range intermolecular forces

The cohesive interactions between the surfaces are considered and approxi-
mated in the form of a molecular interaction potential. Israelachvili [5] showed
that molecular interaction potentials with a short range repulsion and an alge-
braically decaying attraction assumes the Lennard-Jones form
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w(r) = 4ε[ρ/r12 − ρ/r6] (8)

Although the above expression describes the London dispersion energy between
non polar molecules as well as the Debye energy between molecules, there are
other short range forces that lead to exponential decay. These short ranged
forces are called polar and the forces causing the algebraic decay (1/r6) poten-
tials as apolar.

To quantify the net effect of the interaction potential on wetting behavior,
consider a liquid film of thickness l on a solid substrate. If the adhesive in-
teractions are strong, the system can lower its free energy by increasing the
distance between two surfaces. This leads to a net repulsive force per unit area
between the solid-liquid and liquid-vapor interfaces, which is called the disjoin-
ing pressure

∏
(l) and can be measured in experiment. The relation between

the disjoining pressure and the interface potential V (l) is∏
(l) = −dV (l)/dl (9)

where
γSV (l) = γLV + γSL + V (l) (10)

is the excess free energy per unit area of the liquid film.
In the case Si > 0, the static film thickness is governed by minimizing the

surface free energy (not V (l)). This leads to the condition [3]

[V (l)− V (0)]/l = dV (l)/dl (11)

Such a drop would prefer to spread across the entire substrate but is restricted
by its finite volume. As a compromise is assumes a pancake like shape.

In principle the equilibrium state can be predicted from the disjoining pres-
sure, but such a calculation is difficult. Another method is to perform numerical
calculations (such as DFT) of the Lennard-Jones potentials. DFT calculations
of simple atoms or molecules have also been verified by experiment. There are
many subtleties involved in DFT calculations of more complex systems.

The second term in Eq. 8 includes all types of intermolecular dipole inter-
actions. Israelachvili [5] showed that the decay∏

(l) ≈ A/6πl3 (12)

where A is called the Hamaker constant. The Hamaker constant plays an im-
portant role in determining which phase the liquid will assume on the surface.
To see this more clearly, consider the relation:

Seq =
∫ ∞
lmin

∏
(l)dl (13)

If Seq < 0, this leads to partial wetting irrespective of Hamaker’s constant A.
On the other hand, when Seq = 0 and A > 0, this leads to the formation of
a wetting layer. Other intermediate states arise for other values of Seq and A.
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Further, the Hamaker constant can easily be obtained from the dielectric prop-
erties of the materials and thus is measurable in experiment.

3.2 Short-range forces: Cahn-Landau phenomenological theory of wetting

Cahn proposed a phenomenological theory of surface free energy along with
a Landau expansion [2], in order to explicitly calculate Seq. Cahn’s theory
can be used to determine wetting phase transitions when short-range forces are
involved. It can also be adapted to include some long range interactions such as
the van der Waals forces as shown in section 3.4. The free energy as introduced
by Cahn is

Fs = Φ(ms) +
∫ x

0

[(c2/4)(dm/dz)2 + ω(m)]dz (14)

where ω is the bulk free energy, m(z) is the order parameter as a function of
distance from the substrate. The term Φ(ms) was included by Cahn to account
for the solid surface and can be expanded as [6]

Φ(ms) = −h1ms − gm2
s/2 (15)

Here h1 is the short-range surface field and g is the surface enhancement. The
field h1 depends on the surface tensions between the surfaces and determines
whether a liquid or vapor state is preferred. If h1 < 0, the vapor state is favored
and if h1 > 0, liquid state is preferred. The surface enhancement factor g
accounts for fact that molecules on the boundary have fewer interactions due
to lesser neighbors. The 3D phase diagram obtained from Cahn-Landau theory
by Nakanishi and M. Fisher [6] is shown in Figure 5.

Figure 5: Wetting phase diagram obtained from Cahn-Landau theory. The curve W repre-
sents the wetting line with the critical temperature Tc at its apex. The tricritical point T 1

w
separates the first-order transition and second-order transition realms. [6]

The three axes are the bulk field h, the reduced temperature t, and the
surface field h1. The surface field, h ≡ (µ− µ0)/kBT , measures the distance in
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terms of a bulk chemical potential from two-phase coexistence. For large values
of h1 the transition is 1st order. However, as one reduces h1 below the T 1

w

tricritical point, the phase transition becomes 2nd order. These transitions and
the triciritical points have been observed experimentally showing that the Cahn-
Landau theory serves as a good tool to understanding wetting transitions. These
results are shown in section 3.3. DFT simulations have also produced similar
results.

Complete wetting is more likely to occur at higher temperatures. In the
first-order transition region this corresponds to a discontinuous jump from a
thin film to an infinitely thick film i.e the potential V (l) is minimum for thin
films at low T and for thick films at high T . For the case of continuous phase
transition, there is a gradual shift in the minimum to an infinitely thick film.

Two independent exponents characterize the critical behavior of a wetting
transition. The first comes from analyzing how cosθeq approaches 1 (θeq → 0)
at the wetting transition. This is directly related to the surface specific heat
which has the form given by the below relation.

(1− cosθeq) ∝ (Tw − T )2−αs (16)

For αs = 1, the first derivative of γSV is discontinuous and the transition is
first-order. However, for αs < 1, the transition is continuous.

The second critical exponent arises from the divergence of the thickness layer
l as

l ∝ (Tw − T )βs (17)

3.3 Experimental results and observations

Experiments performed by Ross [9] for the evolution of liquid drops of
methanol at the liquid-vapor interface of different alkanes are in direct agreement
with Cahn’s phenomenological theory and the phase diagram obtained above
(Fig. 5). The phase diagram obtained from experiment is shown in Figure 6.

When the wetting transition occurs close to the critical point Tc, the transi-
tion is continuous, whereas away from the critical point, the transition is discon-
tinuous and the divergence is logarithmic. Similar results are also obtained in
mean-field (MF) and renormalization group (RG) calculations for short-range
forces. Hence βs = 0(log). This is also in agreement with Cahn’s theoretical
phase diagram. Critical wetting is confined to a small region near the critical
point: 0.97 < Tw/Tc < 1.

An experimental measurement of the contact angle close to the critical point
Tw yields αs = 1.0± 0.2 for first-order transitions and αs = −0.6± 0.6 for con-
tinuous phase transitions (Figure 7) [9].
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Figure 6: (Left) Surface phase diagram for wetting of alkanes. (Right) The plot shows a
second order or continuous divergence of wetting layer thickness observed for the wetting of
methanol on nonane (C9) and the first-order or discontinuous phase transition of methanol
on undecane (C11) [10]

Figure 7: Experimental calculation of the critical exponent αs for the two cases nonane (C9)
and undecane (C11)

3.4 Including long-range forces in phase diagram

Besides the first and second-order transitions seen above, a third wetting
transition depending on the long-range forces can also take place. These long-
range forces discourage wetting at low temperatures, but favor them at high
temperatures. At low T , as one increases the temperature, the system reaches
a first order like transition but, as A < 0, the formation of a macroscopically
thick layer does not occur. Instead the system settles in a partial wetting state
called frustrated complete wetting where the film is neither macroscopically
thick nor microscopically thin. On further increase in the temperature T , the
film thickness diverges in a continuous fashion as A → 0 and changes sign
(Figure 8).

Figure 9 shows a measurement of the surface free energy (1 − cosθeq) as it
diverges. At about 292 K one can observe a discontinuity in the free energy
indicating a first order transition. Increasing the temperature further shows
that the contact angle vanishes smoothly as expected in a continuous phase
transition. A fit for this data gives 2 − αs = 1.9 ± 0.4 for the continuous
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Figure 8: Sequence of two wetting transitions for the wetting of hexane on water. The
system first undergoes a first order transition to a partial wetting state. As the temperature
is increased the thickness diverges continuously [11]

Figure 9: Divergence of surface free energy with temperature. The filled circles are obtained
when the temperature was increased and the open circles are obtained when the temperature
is reduced [7]. One can observe the existence of a metastable state indicating a frustrated
wetting state.

phase transition. The value obtained for non retarded van der Waals forces is
2 − αs = 3. This difference can probably be explained due to the difference in
the apparent and asymptotic value of the critical exponent.

To describe this transition better, we include the next higher-order term in
the interaction potential

V (l) =
A

12πl2
+
B

l3
(18)

where B > 0. The free energy is now minimized when

l = −18πB/A ∝ 1/(Tw − T ) (19)

which complies with experimentally obtained values of film thickness l ≈ 50A0.
This implies that the critical exponent is βs = −1 which was verified by exper-
iment [8], to be βs = −0.99 ± 0.05. These results along with a theoretical fit
from using full Lifshitz theory are shown in Figure 10a). The generic wetting
phase diagram obtained in experiments is shown in Figure 10b).

10



Figure 10: a)(Left) Thickness l of a mesoscopically thick film of liquid pentane on water
as a function of temperature. This film is stuck in the frustrated complete wetting state
between first-order and second-order phase transition. b)(Right) This shows a generic phase
diagram. The dotted line represents a first-order phase boundary and the solid line represents
a second-order phase boundary.

4. Conclusion

This review discussed the basics and some the preliminary work done in the
rapidly growing field of wetting and spreading. Section 2 started with a basic
analysis of the surface tension forces which lead to Tanner’s law for radius of a
drop as a function of time. This section also indicated that experiments were
in agreement with Tanner’s law. The next section focused on the equilibrium
properties of surface wetting. This section began with an interaction potential
that accounted for long-range forces. Then, Cahn’s phenomenological theory
was used to predict a phase diagram and extract critical exponents for short-
range interactions. Corresponding experimental evidence in support of this
theory was also provided. Finally, section 3.4 included the effects of long-range
interactions into the phase diagram which lead to a possible metastable state as
observed in experiment and explained by a slight modification to Cahn’s theory.

The conditions discussed in this review apply to idealized situations near
equilibrium that have been tested in careful, well established laboratory envi-
ronments. In real life, such situations rarely occur. A more detailed analysis
would involve a careful consideration of surface defects, contact line dynamics,
contact line hysteresis as well as fluctuations. All these could drastically affect
wetting phenomena. Current progress in theory and experiment is trying to
address these very issues.
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