
1 
Ayah Massoud, Geomagnetic reversal through critical models, Phys 563 

 

Geomagnetic reversal through critical models 
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Abstract 

Geomagnetic polarity  reversal intervals display  power law distribution functions, which 
indicate a critical phenomenon as the mechanism of their source. The geodynamo is assumed to 
be a system of magnetic spins in a critical phase-transition state. Seki and Ito developed two 
models to simulate these reversals: the N-disc coupled model and the Coupled map lattice model 
both derived from the Rikitake Dynamo system and are both reviewed here. The simulations 
were done in two dimensions in a square lattice with periodic boundary conditions. The major 
difficulty is simulation times, which hinders a full three dimensional model.  

Introduction 

The earth’s magnetic field generates the magnetosphere which shields the earth from the stream 
of charged particles in solar wind. The geomagnetic field has reversed repeatedly during the 
Earth’s history. The duration of reversal ( 103 years) is much less relative to the duration of 
constant polarity (105 - 106 years). The last reversal that occurred was around 700,000 years ago. 
Geophysicists are able to study these reversals by measuring the magnetic direction recorded in 
minerals in rock sediments and are able to track reversals several hundred million years ago. The 
time interval of the reversal is highly irregular with intervals of 107 years though the number of 
intervals decrease greatly as the interval length increases and The average interval between 
polarity reversals is about 7 × 105 years.  

The mechanism  behind the reversal and the wide variation in reversal interval is not completely 
understood but is believed to be associated with the MHD of the outer core. Dynamo theory 
studies how the motion of an MHD fluid can give rise to the generation of a macroscopic 
magnetic field. However, the fluid motion in the outer core is turbulent and forms eddies which 
makes it very difficult to model the dynamo using three-dimensional hydrodynamic equations 
and too time consuming to evolve the system over a time scale comparable to a reversal interval.   

The  simplest model that resembles a geodynamo was that proposed by T. Rikitake in 1958 that 
models the geodynamo a two disc coupled dynamo system. The model consists of two identical 
single Faraday-disc dynamo coupled together (figure 1). The current in the dynamo coils (𝑥𝑥,𝑦𝑦) 
are related to the angular velocities of the dynamo discs (𝑧𝑧, 𝑧𝑧′) given by the differential equations 

𝑥̇𝑥 =  −𝜇𝜇𝜇𝜇 + 𝑧𝑧𝑧𝑧                   

𝑦̇𝑦 =  −𝜇𝜇𝜇𝜇 + 𝑧𝑧′𝑥𝑥                  

𝑧̇𝑧 =  𝑧𝑧′̇ = 1 − 𝑥𝑥𝑥𝑥              
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𝑧𝑧 ′ = 𝑧𝑧 + 𝛼𝛼                           

The parameter 𝜇𝜇 represents the resistive dissipation and 𝛼𝛼 is the difference between the angular 
velocities of the two dynamo discs. 

 

Figure 1: two disc-dynamo: The discs are coupled in the following way.  Disc 2 rotates in the magnetic field caused 
by the current in disc 1 and vice versa. 

The Rikitake system has two equilibrium points (±𝐾𝐾, ±1/𝐾𝐾, 𝜇𝜇𝐾𝐾2) in the phase x-y-z phase 
space. 𝐾𝐾is given by 

−𝛼𝛼 = 𝜇𝜇(𝐾𝐾2 − 𝐾𝐾−2)  

The Rikitake system is extensively used by physicists to model the geodynamo due to its 
simplicity. However, the Rikitake model exhibits chaos of the Lorenz type characterized by 
irregular flipping between two unstable fixed points and has been investigated from a dynamical 
point of view to the richness of  the behavior presented by its solutions  

Power law distribution 

The challenge of studying geomagnetic reversals was determining the cumulative distribution of 
the polarity reversal time interval. Naidu showed that a gamma distributions was good fit for the 
observed time intervals over the last 65 m. years. Gaffin analyzed the geomagnetic polarity 
reversal record for the last 165 m. years and found that the cumulative distribution of the 
intervals follow a power law but concluded that the Poisson distribution provides a better 
description of the distribution of interval length.  Ito noted that the scaling in the power law 
distribution was indicative of a critical phenomenon.   
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Figure 2: log-log plot of the cumulative distribution of polarity reversal length for the past 165 m. years.         

The power law distribution has the form 

𝑃𝑃(𝑥𝑥) ∝ 𝑥𝑥−𝛼𝛼−1      (0 < 𝛼𝛼 < 2) 

From figure 2, the slope of distribution is -1.5 so 𝛼𝛼 =1.5. The n-order moment is given by 

⟨𝑥𝑥𝑛𝑛〉  =  � 𝑃𝑃(𝑥𝑥)𝑥𝑥𝑛𝑛
∞

−∞
 𝑑𝑑𝑑𝑑 

The n-order  moment is infinite when n is larger that 𝛼𝛼. Since 𝛼𝛼 =1.5, the variance in divergent. 
variance should approach infinity as the time series become large while the mean value is 
expected to fluctuate strongly. This indicates that the process is statistically non stationary but 
dynamically stationary, occurring in a single state.  

 

N-disc dynamo model 

the two disc Rikitake dynamo was studied in detail and was found that the model predicts a 
cyclic variation of the dipole during stable polarity periods. The N-disc dynamo improved this 
weak point and exhibited chaotic behavior and a statistical nature of polarity reversals similar to 
that for the earth's magnetic field.  However, solving the N-coupled disc dynamo model near the 
critical phase transition requires a large computing time to reach a steady state due to the critical 
slowing-down effect.  
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The model proposed by Ito and Seki uses a stochastic N-disc dynamo to approximate the 
turbulence in the outer core. In addition, the turbulent eddies are approximated by magnetic 
spins. The nearest neighbor interactions are similar as in the Ising model and extend over four 
nearest neighbors. The energy is given by 

𝐸𝐸 = −�𝑆𝑆𝑖𝑖
𝑖𝑖 ,𝑗𝑗

𝑆𝑆𝑗𝑗    

Q2R cellular automata was used in the simulations. In Q2R, all of the spins are flipped 
simultaneously while in the canonical Ising model, only one randomly selected spin is flipped at 
a time.    

To conserve energy, a particular spin is flipped if and only if it has the same number of up and 
down neighbors. The system is modeled in two dimensions one a 64×64 square lattice using 
periodic boundary conditions. As the number of spin ups is increased, the total energy if the 
system increases and the fluctuations in magnetization become large and more rapid and polarity 
reverses (figure 3).  

 

Figure 3: the fluctuation in magnetization for 8×105 time steps. 
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As energy is increased further, polarity reverses frequently and intervals of polarity reversal 
become short. The interval of polarity reversal is measured and integrated distribution is 
obtained.  This is evident in figure 4, as the number of spins is increased the flat part (4a and 4b) 
becomes shorter and the distribution becomes linear at large time intervals ( 4c and 4d). The 
phase transition is evident when the polarity reversal intervals obey a power law distribution and 
thus figure  4c is a transition state. However, the power exponent obtained through the model is -
0.5 while it is -1.5 for the geomagnetic data. The reason for the difference is that the model is too 
simplified although it still displayed a phase transition state.  It should be noted that the power 
law distribution in bears a strong resemblance to the “1/f” noise spectrum associated with self 
organized criticality (SOC). Particularly, the coupled dynamo is similar to an SOC feedback 
mechanism.  

   

 

Figure 4: the distribution of polarity reversal intervals for 6×105 time steps for different number of up spins a) 
n=307 b) n=329 c) n=346 d) n=384  

CML Model:   

CML was first introduced by Kaneko in 1984 to systematically investigate high-dimensional, 
chaotic systems within a simple framework. It displays various complex collective behaviors and 
thus can be used as a model for problems such as turbulence, pattern formation and phase 
transitions in spatial structures. The model is described by a lattice where each site evolves in 
time through a recurrence equation of the form 

𝑋𝑋(𝑡𝑡+1) = 𝐹𝐹(𝑋𝑋𝑡𝑡) 
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and time is discretized. In the case of polarity reversal, the Lorenz map of the Rikitake Dynamo 
system (figure 5 a) was discretized into a piecewise linear form (figure 5 b). The generic 
recursion relation becomes 

𝑆𝑆𝑡𝑡+1 =  𝛾𝛾(𝑎𝑎, 𝑏𝑏) 𝑆𝑆𝑡𝑡 + 𝛿𝛿(𝑎𝑎, 𝑏𝑏) 

Where 𝛾𝛾 and 𝛿𝛿 vary depending on the interval. The parameter 𝑎𝑎 controls the condition of the 
laminar phase of motion (slope in the Lorenz map) and parameter 𝑏𝑏 controls the width of the 
domain for each 𝑆𝑆𝑡𝑡  and 𝑆𝑆𝑡𝑡+1. A discontinuity indicates a chaotic behavior, thus 𝑏𝑏 controls the 
width of a chaotic burst. It should be noted that time and space are discrete while the state is 
continuous. 

  

Figure 5: a) Lorenz map of the Rikitake Dynamo system for K=2.0 and μ=1.3. Xn represents the n-th local 
maximum of 𝑋𝑋𝑛𝑛  and 𝑋𝑋𝑛𝑛+1 is the n+1-th local maximum. b) Discretized Lorenz map in (a) used in CML model.  

A two dimensional lattice with nearest neighbor interactions was simulated and the interaction 
was done over four neasrest neighbors with interaction intensity 𝑗𝑗. The simulation was done 
using 32×32 square lattice system with periodic boundary conditions. The system was evolved 
for 106 time steps. The parameters 𝑎𝑎, 𝑏𝑏 and 𝑗𝑗 were repeatedly varied and the polarity reversal 
distribution of CML model was compared to the geomagnetic data. 

A larger 𝑗𝑗 indicates a larger interaction between turbulent spins and a more ordered system. The 
system thus exhibits supercritical behavior (< Tc) and the power exponent is small. A larger 𝑏𝑏 
indicates more chaotic behavior and thus more frequent the polarity reversals. In addition, the 
power exponent becomes larger for larger 𝑏𝑏. The parameters 𝑏𝑏 and 𝑗𝑗 were varied until the 
simulated distribution polarity reversal coincided with the geomagnetic data in figure 2 with a 
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power exponent of -1.5. The optimal values obtained for 𝑗𝑗 and 𝑏𝑏 were 0.05-1 and 0.4-0.45 
respectively. The large value obtained for 𝑏𝑏 and relatively small value for 𝑗𝑗 indicates that each 
element is in a strongly chaotic state, which may suggest that the geodynamo is turbulent and is 
in a strongly chaotic state.   

Finally, when j and b are fixed, a is varied (figure 6) and polarity distribution is examined again. 
For large a, the distribution is too steep, indicative of the CML system acting chaotically. For 
smaller a, the distribution appears similar to the geomagnetic result in figure 1. The change in 
shape of graph indicates a phase transition that is determined by a. 

 

Figure 6: the distribution of the polarity reversal intervals for different values of 𝑎𝑎 (𝑏𝑏 =0.4,  𝑗𝑗= 0.1) 

 

The advantage of the CML model is that it requires much less computation time than the coupled 
disc dynamo model. In the CML model, spins do not have discrete values and can freely reverse 
their polarity. This is a major variation to the previous model since spins in the previous model 
only reversed polarity through interacting with neighboring spins. Thus autonomous reversal of 
polarity in CML is similar to the geomagnetic data where short term polarity reversals are more 
frequent. 

 Conclusion: 

Though a full and accurate model of the geodynamo is a long time away, the use of critical 
phenomena in explaining the geomagnetic polarity reversal has shed new light on the dynamics 
of the process. Seki and Ito interpreted the power law distribution as evidence of a dynamical 
phase transition state in the geodynamo. The N-disc dynamo model based on the Rikitake 
Dynamo yielded a power law distribution similar to the geomagnetic results but with different 
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exponents. The model was later improved using a coupled map lattice model instead which 
yielded an exponent similar to the geomagnetic results but only when the parameters are varied 
such that each element is in a strongly chaotic state. Future models might include a better 
alternative to the Rikitake system and include variables such as eddy turbulences and tectonics 
activity.  
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