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ABSTRACT

In this review, it is discussed how by incorporating the theory of fluctations
into the basic axioms of thermodynamics, thermodynamic systems can be mapped
into appropriate Riemannian geometries. For systems such as the ideal gas, fer-
romagnetic one-d Ising model and the Van der Waals Gas, it is found that the
curvature of this manifold is related to the correlation volume of the system.

The correlation volume is conventionally calculated from a statistical ”micro-
scopic” description of systems. For other systems such as the antiferromagnetic
model and Kerr Newmann black holes the correlation volume is given a new in-
terpretation. In the case of Kerr-Newmann black holes it is interpreted as the
average number of correlated planck areas at the hole’s surface.This idea may be
formally extended to understand phase transitions in black holes thermodynamics
where there is not a completely developed microscopic theory ”quantum gravity”.
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1 INTRODUCTION

Black holes are objects of interest both theoretically and experimentally. They
represent an extreme system where the gravitational force reigns supreme. Black
holes are a prediction of general relativity and it is widely believed that there
is one at the center of every galaxy. On the astronomical scale, black holes are
believed to play important roles in the large scale structure of space and time,
playing a major role in galaxy formation. Theoretically black holes are of huge
interest because close to their centres, the curvature of space time and energy
density of matter are infinite according to Einstein’s equations of classical gravity.
It is expected that the laws of quantum gravity should hold under this conditions,
therefore an understanding of black hole interactions is crucial to a unified view
of the two pillars of modern phyics (quantum physics and GR). In this respect,
there is still quite some work to be done both theoretically and experimentally.
Also, in the modern context of ADS/CFT black hole models are crucial to the
understanding of the holographic principle.

The goal of this work is to present an approach that has been applied and
tested on better understood systems like the ideal gas and the 1-d Ising Model.
This approach is based on Riemannian Geometry on the phase space of thermo-
dynamic variables. The original approach due to George Ruppenier[1] is based
on a metric constructed from the second derivative matrix of the entropy. Up
to second order in fluctuations of thermodynamic variables from equilibrium, the
Ruppeiner metric physically measures the likelihood of fluctuations from equilib-
rium. Based on calculations done on the classical ideal gas model, an equation
similar to that of general relativity is postulated to relate the curvature of the
thermodynamic geometry to the interaction strength of the physical system. For
the 1-d antiferromagnetic Ising model, Van der Waals gas, this postulate further
suggests that the interaction strength is proportional to the correlation volume of
the system which is conventionally calculated in statistical mechanical treatments
as giving the range of the correlation function G(r). For systems such as the 1-d
ferromagnetic model a new but useful interpretation of correlation length has to
be adopted . This new intepretation is extended to the Ruppiener geometry for
kerr-Newmann black holes.

Other approaches to thermodynamic geometries are also possible. In particular
by appealing to invariance of thermodynamics under a change of thermodynamic
potentials, a Legendre invariant geometry for the study of black holes physics
reveals the points at which the heat capacity at constant charge and angular mo-
mentum diverges. According to a classiification of black hole phase transitions due
to Davies [7], these are also the phase transition points of black holes. This classi-
fication is not generally agreed upon and other classifications based on for instance
a change in topology have been devised. These are not discussed in here, rather
attention is devoted to the formalism of the geometric formulation of thermody-
namics. The results obtained from an application to black hole thermodynamics
and criticality are also summarized and discussed.
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2 GEOMETRIC FORMULATION OF FLUC-

TUATION THEORY

The goal of a geometric formulation of thermodynamics is to provide a represen-
tation of systems which is intrinsic and does not depend on any particular choice
of variables. In the case of fluctuation theory, the main foundation of a geometric
formulation are that the equilibrium states of a thermodynamic system can be
represented by points on an n-manifold. Where n is the number of independent
physical quantities required to fully specify the state of the system, for axample
n = 2 for an ideal gas. This manifold is assumed differentiable except at phase
transitions and critical points [1].

The second foundation builds on an understanding that the equilibrium value
of thermodynamic quantities fluctuates about a mean value a result which follows
from statistical mechanics [9]. According to this theory given an open system Av
with fixed volume V immersed in a large energy reservoir, the values of thermo-
dynamic quantities x of Av will fluctuate around a most probable value y with
a probabilty distribution W (x, y)dy = CeS(x,y)/KB , where S(x,y) is the total en-
tropy, KB is Boltzmann’s constant and B is a normalization constant. This is
really just a consequence of the way entropy is usually defined. As shown in [1],
for a pure fluid the W(x,y) can be expanded around its maximum x up to second
order to give a second moment:

W (x, y)dxdy = 2π exp(−1

2
gij∆yi∆yj)

√
g(x)dxdy (1)

Where gij(x) = − ∂2S
∂yi∂yj

. Since the entropy is maximixed at x, gij(x) is positive

definite and is thus a natural candidate for a metric on the 2-manifold of a fluid
system with line element:

ds2 = gij∆yi∆yj (2)

The physical interpretation of this line element is that likely configurations are
closer to the mean configuration while unlikely ones are further apart. It is well
known in Riemannian and Pseudo-Riemmanian geometry that a metric tensor
leads to the definition of invariants related to the curvature of a manifold. This
fact plays a very important role in general relativity [5]. The curvature is an
intrinsic property of the manifold and it is natural to enquire what the curvature
of the fluctuating metric would mean for thermodynamic systems. A guide to a
general answer to this question is given in [1] where the metric in temperature,
density (T, ρ) coordinates for a classical ideal gas given by:

ds2 =
Cv
kBT 2

dT 2 +
V

kBTρ2KT

dρ2 (3)

Where Cv and KT are the heat capacity at constant volume and isother-
mal compressibility respectively. The equation of state is P = ρkBT and Cv =
Nf(T ). By making a change of coordinates y1 = (2V ρ)

1
2 (cos τ

2
+ sin τ

2
) and

y2 = (2V ρ)
1
2 (cos τ

2
− sin τ

2
) where τ =

∫ T
C

( f(T )
kBT 2 )

1
2 dT and C is an arbitrary con-

stant positive temperature, one gets that the line element for an ideal gas reduces
to ds2 = dy2

1 + dy2
2 which is just the line element of 2-d euclidean space with zero

curvature.
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The main feature of an ideal gas is the absence of interactions therefore the
result that the ideal gas thermodynamic geometry has zero curvature suggests an
association of curvature with interaction strength. In [1] a relation is postulated
as given by:

V K(x) = qI(x) (4)

This is the fundamental equation of this geometry, and q is a constant that
can only be determined from experiment.

K(x) =
−1

2g
1
2

[
∂

∂T

(
g

−1
2
∂gρρ
∂T

)
+

∂

∂ρ

(
g

−1
2
∂gTT
∂ρ

)]
(5)

is the Gaussian curvature , gTT = Cv
KBT 2 , gρρ = V

KBTρ2KT
, g = gTTgρρ and I(x) is

an object that characterizes interaction strength. Using the scaling relationships
for a fluid along a path of critical density ρc,

Cv
V

= At−α and KT = Bt−γ, where
A and B are constants and t is the reduced temperature one obtains on using the
experimentally calculated α = 0.1 and γ = 1.19 [1]

−V
2g

1
2

∂

∂T

(
g

−1
2
∂gρρ
∂T

)
= 0.21

kB
A
tα−2 (6)

A more difficult calculation[1], yields a term that is negligible and from equa-
tion (4), it can be concluded that I(ρc, t) = 0.21 kb

qA
tα−2. Therefore I(x) has the

same dimensions and critical exponent as ξ3 where ξ is the correlation length.
This suggests an identification of I(x) with ξd for any physical system. We note
that this is merely an hypothesis whose validity can only be tested with experi-
mentally determined values of correlation volumes for well known systems. In the
next section a summary of this hypothesis as applied to the 1-d ising model is
given.

3 RESULTS FOR 1-D ISING MODEL

By the same reasoning applied above, the metric for the 1-d ising model is given
by ds2 = 1

T
∂S
∂T
dt2 + 1

T
∂H
∂M
dM2, where H is the external field and M is the mag-

netization. The Gaussian curvature K(x) is given an expression analogous to
(5). To test the hypothesis that K(x) obtained from geometry is directly related
to the correlation volume, a numerical calculation on the partition function for
the 1-d ising hamiltonian has been done [10]. For the ferromagnetic ising model
with coupling constant J > 0 it is found that the correlation length ξG obtained
from geometry is in excellent agreement with the known values of ξ which gives
the range of spin-spin correlations G(r) never deviating by more than one lattice
constant [10]. When J = 0, the manifold of thermodynamic states is effectively
one dimensional which implies a curvature of zero, agreeing with the expectation
that curvature is proportional to interaction strength. For the antiferromagnetic
case with J < 0, the results are not quite accurate in comparison with the usual
definition of the correlation length. Nevertheless in [10] it is is argued that ξG
can be interpreted physically as given the average length due to interactions of
clusters of alligned spins.
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For systems such as the Van der Waals gas and ideal paramagnet there is a
similar agreement between the curvature and the correlation length. The thermo-
dynamic curvature has been extensively discussed in the literature, see [11] for a
review.

Taking this formulation as containing some useful physics, this geometric
model of analyzing the thermodynamics of systems can lead to insight about
phase transitions is black holes where very little is understand about the micro-
scopic processes that govern the interactions in black holes. In the next sextion,
a quick review of black hole thermodynamics is given.

4 REVIEW OF BLACK HOLE THERMODY-

NAMICS

According to Einstein’s theory of General relativity the gravitational field mani-
fests itself as curvature of space and time due to sources of energy and momentum.
In [5], it is demonstrated that an analysis of Einstein field equations combined
with the thermodynamics of stars reveal that the final state of collapse of a star
about eight time more massive than our sun results in objects known as black
holes. When a spherically symmetric collapsing star of mass M shrinks beyond a
radius of 2GM

c2
the gravitational field becomes too strong that even light cannot

escape this radius, and a black hole is inevitably formed. This is known as a
Schwarschild black hole and is uniquely specified by its mass. In this case the ra-
dius 2GM

c2
is known as the event horizon. In the more general case after the collapse

of a star state of the black hole formed is uniquely determined by its mass M ,
angular momentum L and charge Q, that this is the case is demonstrated in [5].
This is known as a Kerr-Newmann black hole. Another black hole of interest is
the BTZ black hole which is the black hole solution to Einsteins equations in 2+1-
dimensions with negative cosmological constant. However this is also specified by
its mass, charge and angular momentum. This state of affairs i.e characterization
by three parameters(M,L,Q) leads to a thermodynamic representation of black
holes.

Since the final state of a black hole is uniquely determined by three parameters
regardless of the structure of the star that resulted in the hole, a given configu-
ration of (M,L, Q) can be a result of several microstates [7]. This idea leads to
the notion of black hole entropy. The details are ommitted here, but calculations
from pure classical considerations give the entropy of a black hole as infinite a
nonsensical result that was rescued by Steven Hawkings [2]. A true understand-
ing of Hawking’s result involves the complicated language of quantum field theory
in curved space-time, but the resulting entropy is given in natural units by

S =
A

4
= π(2M2 −Q2 + 2

√
M4 −M2Q2 − L2) (7)

where A is the surface area of the event horizon. The second law of black hole
thermodynamics is that in any process involving black holes the total surface area
can never decrease [7]. A major issue in black hole thermodynamics is that of
the definition of temperature, with details ommited here, the temperature of a
black hole is defined to be T = κ

2π
, where κ = 8π ∂M

∂A
is known as the surface
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gravity. This definition is essentially a zeroth law, and from equation [7] and the
definitions given, the first law takes the form.

dM = TdS + ΩdL+ ΦdQ (8)

Where

T =
∂M

∂S
,Ω =

∂M

∂L
,Φ =

∂M

∂Q
(9)

are the temperature, angular velocity and electric potential respectively.
It must be emphasized that despite the fact that these themodynamic notions

are well defined, the internal structure of black holes is still poorly understood. In
particular it is not still quite clear what is precisely meant by a phase transition
in a black hole. Of course a full understanding can only be achieved by a well
developed theory of quantum gravity. Nevertheless, a lot of work has been done in
this regard. From equations (9,10), the heat capacity of a black hole at constant
charge and angular momentum, i.e a measure of the energy transfered in a process
between two equilibrium states that only changes the mass is given by:

CL,Q = T

(
∂S

∂T

)
L,Q

=
8MS3T

L2 + Q2

4
− 8T 2S3

(10)

Davies [7] based his classification of phase transitions in black holes on this
heat capacity. This is not generally agreed upon and this issue re-surfaces in the
geometric formulation as well.

5 FLUCTUATION GEOMETRY FOR BLACK

HOLES

As reviewed in the previous section a Kerr-Newman black hole is characterized
by its mass M, angular momentum L and charge Q. Also from the formula for the
entropy given in (7), a fluctuation geometry based on the entropy similar to that
for the ideal gas for black hole thermodynamics can be easily obtained. Before this
is explored, a subtlety involved in the formalism must be adressed. We note that
other thermodynamic geometries can be obtained based on the hessian matrix of
other thermodynamic potentials. A common one is Weinhold geometry based on
the internal energy [8]. It is a well known fact from thermodynamics that the
physical description of systems does not depend on the thermodynamic potential
being used. Since different potentials are related by a legendre transformation, the
authors of [7] argued that any thermodynamic metric that represents an intrinsic
description must be legendre invariant.

It turns out that the Ruppiener geometry is not Legendre invariant and this
has led to a formulation of a legendre invariat geometry for black holes. Here
both results from the Ruppiener geometry and Legendre invariant geometry are
summarized.

In [8], after some differential geometric and physical considerations. It is ob-
tained that the legendre invariant metric on the phase space of thermodynamic
varaibles for black holes is given by:

ds2 = (MSM +QSQ + LSL)(SMMdM
2 − SQQdQ2 − SLLdL2 − 2SQLdQdL) (11)
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Where subscripts denote partial differentiation.
Using the entropy formula (7), and introducing coordinates (x1, x2, x3) =

(M,J,Q), the line element for the ruppiener geometry based on the hessian of
the entropy is given by:

ds2 = gµνdx
µdxν (12)

where gµν = − 8π
L2
p

∂2S
∂xµ∂xν

and LP is the planck length.

Next it is explored how this different formulations may yield insight into critical
phenomena in black holes.

6 CRITICAL PHENOMENA IN BLACK HOLES

6.1 Legendre invariant geometry

6.1.1 Reissner-Nordstorm black hole

This is a black hole with L = 0, i.e no angular momentum. It is spherically
symmetric with two horizons at r± = M ±

√
M2 −Q2 From (7), the entropy

is S = π(M +
√
M2 −Q2)2, the heat capacity (10) in terms of r± is CQ =

−2π2r2+(r+−r−)

r+−3r−
The scalar curvature in this case for the metric (11) is given by:

R =
(r2

+ − 3r−r+ + 6r2
−)(r+ − r−)2

π2r3
+(r2

+ + 3r2
−)2(r+ − 3r−)2

(13)

In the extremal limit which is a zero temperature black hole, the scalar curvature
is zero. From the the expression (13), its is deduced that the scalar curvature
diverges at r+ = 3r− which is precisely where the heat capacity diverges signalling
a second-order phase transition.

6.1.2 Kerr black hole

This is a neutral black hole corresponding to Q = 0. It represents a stationary,
axially symmetric, rotating black hole with two horizons located at: r± = M ±√
M2 − L2/M2, the entropy (7) is S = 2π(M2 +

√
M4 − L2), the heat capacity

(10) in terms of r± is given by CL = 2π2r+(r++r−)2(r+−r−)

r2+−6r+r−−3r2−
. The scalar curvature

obtained from the legendre invariant metric is given by:

R =
(3r3

+ + 3r2
+r− + 17r+r

2
− + 9r3

−)(r+ − r−)3

2π2r2
+(r+ + r−)4(r2

+ − 6r+r− − 3r2
−)2

(14)

In this case the scalar curvature is found to diverge when r2
+ − 6r+r−3r2

− = 0
which is exactly where the heat capacity diverges signalling a second-order phase
transition.

6.1.3 General Kerr-Newman black hole

This represents the most general rotating and charged black hole with horizon at

r± = M±
√
M2 − L2

M2 −Q2 . The scalar curvature obtained in this case is R ∝ 1
D

where

D ∝ A(M,Q,L)[2M6− 3M4Q2− 6M2L2 +Q2L2 + 2(M4−M2Q2−L2)
3
2 ]2 (15)
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and A(M,Q,L) is always positive when M4 ≥ M2Q2 + J2 as required by the
cosmic censorship hypothesis (which is a limit proposed by Roger Penrose to avoid
the presence of naked singularities in our universe [7]). The term in the squared
brackets is the denominator of the heat capacity, therefore one concludes that the
heat capacity diverges when the curvature scalar diverges, also signalling a second
order phase transition.

6.2 II. Ruppiener geometry

As explained above, concerns have been posed about the legendre invariance of
the Ruppiener metric. Nevertheless as discussed in the first few sections there
are hints that there is some physics to be learnt from the Ruppiener metric. It
is explained in [4] how a different interpretation of the curvature in terms of the
number of correlated Planck lengths at the surface of the black hole is possible.
Since the issue of phase transitions in black holes is not really well understood,
this contrasting point of view is summarized here. In terms of the entropy the first
law (8) implies 1

T
= ( ∂S

∂M
)L,Q,−Ω

T
= (∂S

∂L
)M,Q,−Φ

T
= (∂S

∂L
)L,M . Defining (α, β) =

( L
2

M4 ,
Q2

M2 ) and (K,P ) = (
√

1− α− β,
√

1 + α). The temperature is easily shown
to be T = 4K

(K2+2K+P 2)M
and the cosmic censorship hypothesis imply α + β < 1.

Also for later use, we define:
A = −2K3 − 3K2 − 2P 2K + 2K − 3P 2 + 4 and B = K3 + P 2K −K + 1
Since the Ruppiener geometry is based on fluctuations away from equilibrum,

several cases as analyzed in [4] are now summarized.

6.2.1 M, Land Q fluctuating

When M, L and Q, fluctuates as demonstrated in [7], the black hole is unstable and
it is not appropriate to use a fluctuation theory based on second order fluctuating
moments here.

6.2.2 M fixed, L, Q Fluctuating

In this case the metric corresponds to a 2-d geometry and the curvature is given
in terms of the variables defined above by:

R =
K5 + P 2K3 − 2K3 − 2K2 + 3P 2K + 2

4πKB2
×
(
Mp

M

)2

(16)

where Mp is the planck mass. It turns out that these curvature never diverges in
the physical regime allowed by cosmic censorship[4].

6.2.3 L fixed, M and Q fluctuating

The metric for this case is also a 2-d geometry with scalar curvature:

R =
1

2πKA2
f(K,P )×

(
Mp

M

)2

(17)

Where f(K,P ) is a polynomial function in its arguments and hence has no
irregular behaviour. The curvature diverges only in the extremal limit K = 0.
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6.2.4 Q fixed, M and J fluctuating

The scalar curvature in this case is: R = 1
2πKA2 g(K,P )×

(
Mp

M

)2

Where f(K,P )

is a polynomial function in its arguments and hence has no irregular behaviour.
The curvature diverges only in the extremal limit K = 0 and also when A = 0.
In the latter case the heat capacity CΩ,Q diverges as A−2.

7 DISCUSSION AND CONCLSUIONS

As described in this review, there is evidence that by incorporating fluctuations
into thermodynamics, a fluctuation geometry which can lead to insight into critical
phenomena in black holes can be developed. The curvature scalar associated
with a geometry based on the second derivative of the Hessian matrix of the
entropy found for systems such as the ferromagnetic 1-d Ising model and the
classical ideal gas is found to be proportional to the correlation volume. The
correlation length is in accord with that usually defined as the typical length scale
of spatial correlations G(r) derived from statistical mechanical models. In the
case of the antiferromegnetic 1-d ising model, this is not quite the case and a new
interpretation of the correlation length as the average length of correlated spins has
to be adopted. This is particulalry relevant in the application to Kerr-Newmann
black holes where the correlation area obtained for the Ruppiener Geometry is
interpreted as the average number of correlated planck areas at the surface of a
black hole. This interpretation is of course speculative and can only be confirmed
by a microscopic theory/experimental data of black holes.

The physical interpretation of the Ruppiener metric is that it measures the
likelihood of fluctuations from equilibrium to second order. It is not quite clear
how higher order flcutuations could be incorporated into the theory. Also there
seems to be no real physical motivation for this formulation of thermodynamics,
only that it seems to predict a way of understanding correlation lenghts and
predicting criticality. In particular its is not well understood how this method is
related to the more standard renormalization group technique for studying critical
behaviour.

By invoking legendre invariance i.e the well known fact that thermodynam-
ics does not depend on the choice of potential chosen to study a system, legen-
dre invariant geometries similar to the Ruppiener geometries can be developed.
For Kerr-Newmann black holes, the scalar curvature of this geometry diverges
at points where the heat capacity at constant angular momentum and charge
diverges. According to the Davies classification of phase transitions in Black
holes, this implies that the scalar curvature diverges at continous phase transi-
tion points of Kerr-Newmann black holes. Some authors disagree with the Davies
classification and this issue may not be settled until when black holes are better
understood.

The importance of this model of critical phenomena is that it seems to indicate
that there is some physics that can be learnt from this formulation. It has been
shown that the scaling behaviour of the scalar curvature and heat capacities in
the extremal limit of kerr-Newmann black holes is equivalent to that for a 2-d
fermi gas [4]. Although no microscopic connection has been made, future work
in this area should be directed at understanding how this correspondences come
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about. This may lead to insight on a correct microscopic theory of black holes. No
experimental results have been discussed since we are still in the every early stages
of understanding black holes and there is a limited availability of experimental
data.
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