Renormalization Group Approaches to the
Kondo Effect

Xianhao Xin
Department of Physics, University of lllinois at Urbana-Champaign

May 12, 2010

Abstract

Kodon effect was first introduced by Knondo in 1964 for explaining the
extraordinary resistivity of metals with magnetic impurities: The resistivity
p(T) increases as temperatufegoes to zero. This problem can be well
understood by the method of the renormalization group. In this essay, the
renormalization group is used to analyze the effective coupling of the im-
puity with the conduction electrons. One finds that the effectvie coupling
diverges towards a fixed point for antiferromagnetic case, and termsdo
for ferromagnetic case. We will discuss the low temperature behavior of the
antiferromagnetic Kondo model, which is well characterized by the Landau
Fermi liquid approach. Some physical quantities such as specific heat ca-
pacity, impurity entropy and suscceptibility are obtained perturbatively in
low temperature limit. The qualitative behaviors of those physical quantities
for the whole temperature regime are also discussed in this essay.

1 Introduction

One of the old and fundamental questions in condensed npduysics is how the
resistivity of metals depends on temperature. In usuad stdite physics textbook,
one finds the resistivity(T) decreases to zero 3s— 0 if phonons intereation
is included. However, experimentally, one observef¥) increases a§ — 0
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if metals contain magnetic impurites. This anomalous benay the metals’
resistivity was explained by Kondo in 1964. The Hamiltonkondo wrote was

H= 3 WU, e +AS 3wl ug (1)
ka Kk

Kk’

whereyy, 's are conduction electron annihilation operators with reatumk and

spina andSis the spin of the magnetic impurity. This Hamiltonian regtesits
the interaction between one impurity spin and electrors-a0.

The perturbation theory up to second leading order ternmessgiwwergent be-
havior of p(T) atT = 0:

D 2
P(T) ~ [)\+v)\2|n?+...] 2)

whereD is the band width and is the density of states. We can immediately

ask one guestion: what happends at the temperdtutelx = De w? At this
temperature, the second ordefA?) term will be comparable to the first order
term O(A). It is clear that the perturbation theory is no longer tuuisih this
case and we can expect that higher order terms in perturbttemry will also
contribute to the expansion at sufficiently low temperature

Wilson developed the idea of renormalization group apgrpatich provides
a powerful tool to understand and solve such questions. @dezifollowing the
idea of Anderson and Wilson developed a simple picture ofdhetemperature
behavior of Kondo problem in 1974. Kondo model was also sbhyethe method
of Bethe ansatz in 1980, which gives the specific heat and ntiagtien.

2 Renormalization Group Approach to Kondo Ef-

fect
Like usual renormalization group method, we could integait (k) for k far
from fermi wave-vectokg, and succesively reduce the band width D. We could
obtain a new effective interaction after one renormaloaratransformation. We

suppose the coupling is weak and hence we can do above pregaztturbatively
in . We could expand the intereaction term

Texp{—m JEGE w*gw@,t)} (3)

2



in the interaction picture. Through expansion of this iat#ion term, we could
arrange the terms order by order by usual Feynman diagraorsexample, the
second otder i term is

2 a b
—%/dtdt’T(S”‘(t)Sb(t’)) T [w*(t)%w(t)wT(t’)%w(t')} 4)

where T is time ordering. Using the Wick’s theorem, we coelduce expression
(4) into

b

—%Z/dtdt’qﬁ {%a%} WT <gOu') > (8t-1)SFS+ 0t ~)S'S)

_ X wtlu. & / it
= 5 [y Sy Siont—t) < OY'E) > (5)

The corresponding Feynman diagrams contributing to reatization of the
Kondo coupling constant are shown in Fig(1).

Figure 1: Feynman diagrams to Kondo problem up to second.orde

Applying renormalization group method, we need integratdtoe momentum
shellD’ < k < D. The easiest way to work out the integral is to write it in the
momentum space instead of real space:

/ d3k /d_ou 1 N 1 i
(2m3 /) 2m |iw+d iw—0] w—&+idsign(e)
dk 1 D' de D

Hence we can get RG recursion relation equation:
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5A = vAZn2 7)

D"’
equivalently, it can be written as
dA 5
4D —VA“, (8)

To see how Kondo coupling depands on the band width D, we dagrete
the equation (8):

Ao

Aeff(D) = ———.
eff( ) 1_\/)\0'”%

9)
Let us look at physics of equation (9). We find there is a fixeidtda Kondo
problem :A = 0, which separates two physical phases. &gor 0 (antiferromag-
1

netic phase), the effective Kondo couplihg ¢ (D) diverges aD ~ Ty ~ Dge .

In this case, as we discussed above, the perturbation tfetsat low tempera-
ture. ForAg < O (ferromagnetic phase), effective coupling coustant — 0.We
should notice that the physical behavior at temperaturedeisrmined by effec-
tive Kondo couplinglett (T) rather then bare coupling. Thereby it is trivial for
ferromagnetic case singgT) — 0 asT — 0. Itis interesting to ask what happens
for antiferromagnetic case?

3 Low T Behavior of Antiferromagetic Kondo M odel

From last section, we find thag; ¢+ — co asT — O for antiferromagnetic case. This
case was first studied in detail by Nozieres in 1975. We cooificler the strong
coupling limit of a lattice model. For simplicity, we only nsider the model in
spatial dimensio = 1. The Hamiltonian is

H =t (@ g+ 4100 + A8 9l 0o (10)

Strong coupling limit meand >> |t|. Hence we can do perturbation the-
ory in t instead ofA. Let us look at physics picture in general before doing any
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serious calcualtion. What is the ground state configuratiddamlitonian (10)
in strong coupling limit. At site O, one electron must formiagtet with impu-
rity | +l> —| 41>. (We assume spin of impurity is half). Electrons can hop
on all sites on the latter except site-0, since it would dgstine singlet state and
henc cost an energdE ~ A >>t. Therefore we can simply form free electron
Bloch states with boundary conditiag(0) = 0, whereg(i) is the single-electron
wavefunction. At zero Kondo coupling, this model can be sdlexactly: one
parity even single particle wavefunctioggi) = coski and one parity odd sin-
gle particle wavefunctiong(i) = sinki. However, in the strong coupling limit,
since the boundary conditiop(0) = 0, we find parity even wavefunctions be-
comeq(i) = | sinki|, while the parity odd ones do not change.

The parity even channel in strong couping limit correporala t1/2 phase
shift to the s-wave channel:

@ ~ e il gt 20gMil 5= /2, (11)

This shows that Kondo impurity effect can be repalced by &eetron theory
with a non-magnetic s-wave scattering witf2 phase shift. How could we under-
stand this statement physically? This is because of sargesfiect as explained
below.

We can linearize the spetrum near Fermi surface. If partiadée is symmetry,
the Fermi surface lies midway between levels or on a levehaws in Figure (2).
Two pictures only differ by a phase shift.

Wilson used numerical RG method to calculate the low-lyingcsum nu-
merically. The result indicates thatrenormalizes tee even if it is initially small
as we expect. However, in real system, electron screeniagteshould be taken
into account, which gives a length scale in the problem

£ ¥—E ~ "BFel/“. (12)

That means wavefunctions of screening electrons are neefomgended to
whole space. It should have a length scéleWe get low energy Bloch states
of free electrons only fofk —kg| << 1/&,i.e. | >> &. The free electron theory
with a phase shift picture corresponds to an universaletaibl energy fixed point
for the Kondo problem. Kondo impurity problem is equivalemt non-magnetic
s-wave scatter with &/2 phase shift at Fermi energy.



Figure 2: Free fermion energy level

More interesting low-T behavior comes from the leadingl@vant operator.
Although we find that impurity spin has been screened frond#dseription of the
low-T physics, a certain interaction between electron areegated at impurity site
only in the process of eliminating the impurity spin. How tbwe write these
effective interaction between electrons? One way is ta §tam microscopic
theory, however it is fairly compicated. Following the $paf Landau, we can
determine these terms by simply writing the lowest dimemsiperators allowed
by symmetry.

For simplicity, we only work with left-movers in 1D case. Hmrthe intereac-
tion can be written in terms ap_. The dimension analysis determines the various
dimension of operators in 1D field theory

_ . d
H _/dxledeL+.... (13)

The lenght and time dimensions are same (we convert themwajtithe di-
mension ofyy field is

H=E=1= [y =EZ=1/2 (14)

If we assume the interactions are local, then they can benelgobby some
local operators



OH = Z)\ioi(XZO), (15)

with dimension[A;] + [Oi] = 1. HenceA; had negative energy dimension, i.e.
irrelevant, if[O;] > 1. One usually difines a dimensionless coupling constant in
RG theory. IfAj] = E™3, then the dimensionless coupling constant can be defined
as

~

Ai = AiD2. (16)

From RG recursion relation

dA; ~
dinD " (17)

Ai decreases as loweing D. So what are the lowest dimensioatopeallowed

by symmetry? Fod = 1 case, we might consider operatpt? (0) g (0). How-
ever this operator is not allowed because it breaks thecgatible sysmmitry.
This term actually contributes to a potential for scattgriwhich adds a term

to the phase shift. Next, fod = 2, there are two operators allowed: one is
ip’ L e (0)—idw'yq(0), which produces a k-dependent phase shift; another
term is l,UTTLIITLIITlL[ll. This term represents the interaction bewteen electrons in
duced by impurity spin flip. It turns out these are the only typerators allowed
with dimensiond < 2. Nod < 1 operators allowed implies that the low energy
fixed point is stable.

Using Wilson’s numerical method or Bethe ansatz, one canlz&these two
coupling constants. However, both of these two methods aite gomplicated.
Dimensional analysis is helpful to understand the problemalitatively. Both
of these two coupling constants have dimendiort, hence we expect them to
be O(1/Tk) by a standard scaling argument. Far << D(A << 1), Nozieres
aruged that these two irrelevant coupling constants havevansal ratio, thereby
there is only one parameter ( Wilson number ) describing thelevtheory. This
irrelevant coupling constant governs all low temperatueadvior. We can do
perturbation theory in the irrelevant coupling constarit/ Tk .

For the specific heat, we find



T T
C~ 3vF|T +aTK. (18)

This is the specific heat of one-dimension system with a singhgnetic im-
purity located at origin. Physically, this expression isyveasy to be understood.
The first term is just usual specific heat for the free eleceystem. It is bulk
property, hence it should be proportional to the size of ffstesnl. The second
term is independent of the size of system and is due to impatiorigin. Why
is this impurity specific term proportional 67 That is the result of first oder
perturbation theory in the irrelevant coupling constammferO(1/Tk ). The lin-
earity of T is fixed by simple dimensional analysis. To geteeme dimensional
result to three dimension, we need only simply multiply thstfierm by the ratio
vw/(I/2nvg), i.e. the ratio of densities of states per unit energy, andregterm
by the number of impurities.

Supposing the spin of impurity is/2, then impurity of the system at high T is

ST)= 3mT|:T +1In2. (19)

The system entropy at low T can be expressed as

i aT
T)=—T+—. 20
ST =37+, (20)
The first term is propotional to the size of system, which eehtropy back-
ground for free system. What we are interested in is the eyfiaphe impurity,
hence we can substract this entropy background, we write

Smp = ST) — T = g(T/Tx) (21)
VF

where g is an universal scaling function for weak bare cowgpliThe behavior
of g(T/Tk) of small T /Tk can be determined by RG-improved weak coupling
perturbation theory. However, the knowledge of the belranfig for whole range

T /Tk is a property of the universal crossover between fixed paimdsis found by
Bethe ansatz. The qualitive behavior of the impurity entrigpshown in Figure.

3.
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Figure 3. Qualitative behavior of the impurity entropy.

We could also calculate the susceptibility. At high T, we eotpour result
should be approximately like a free spin:

| 1

ENZT[VF—{—E'

(22)

At low T, the susceptibility can be computed by the RG impropedurbation
theory:

fot 41 1)+.... (23)

~ s =
ove T AT |T In(T /Ty

Hence the impurity susceptibility reads

o
Emp=¢ — e $f(T/TK), (24)

wheref (T /Tk) is another universal scaling function. See Figure (4).
The low T resistivity for the dilute impurities can be comgditoy RG group
method up to second order,



X imp

Figure 4: Qualitative behavior of the impurity suscepitiiil

p~py[1-d(T/Tk)?], (25)
3n;

wherepy = P is unitary limit resistivity andd is some dimensionless con-
F

stant. Second order perturbation theory in the irrelevanpmg constant gives
the contribution of the second term in expression (25).

At high T, as we state at the begining, the usual naive peatim thoery still
holds, hence the result is just given by equation (2):

p(T) ~n [A +A2n(D/T)+..]%. (26)

The scaling behavior of resistivity is sketched in Figure (5

4 Summary

We discuss the Kondo effect based on renormalization grathaod in this essay.
We derive the RG recursion relation and find that there havestparate phases:
antiferromagnetic phase and ferromagnetic phase in Konolilggm. Detail dis-
cussion of low T behavior of the antiferromagnetic Kondolppem is given. An
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Figure 5: Qualitative behavior of the resistivity.

universal scaling behavior of impurity specific heat, imfyuentropy, impurity
sesceptibility and resistivity is shown at the end of thagss
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