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Abstract

Kodon effect was first introduced by Knondo in 1964 for explaining the
extraordinary resistivity of metals with magnetic impurities: The resistivity
ρ(T ) increases as temperatureT goes to zero. This problem can be well
understood by the method of the renormalization group. In this essay, the
renormalization group is used to analyze the effective coupling of the im-
puity with the conduction electrons. One finds that the effectvie coupling
diverges towards a fixed point for antiferromagnetic case, and tends tozero
for ferromagnetic case. We will discuss the low temperature behavior of the
antiferromagnetic Kondo model, which is well characterized by the Landau
Fermi liquid approach. Some physical quantities such as specific heat ca-
pacity, impurity entropy and suscceptibility are obtained perturbatively in
low temperature limit. The qualitative behaviors of those physical quantities
for the whole temperature regime are also discussed in this essay.

1 Introduction

One of the old and fundamental questions in condensed matterphysics is how the
resistivity of metals depends on temperature. In usual solid state physics textbook,
one finds the resistivityρ(T ) decreases to zero asT → 0 if phonons intereation
is included. However, experimentally, one observersρ(T ) increases asT → 0
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if metals contain magnetic impurites. This anomalous behavior of the metals’
resistivity was explained by Kondo in 1964. The HamiltonianKondo wrote was

H = ∑
~kα

ψ†α
~k

ψ~kαε(k)+λ~S ·∑
~k~k′

ψ†
~k

~σ
2

ψ~k′ (1)

whereψ~kα ’s are conduction electron annihilation operators with momentum~k and

spin α and~S is the spin of the magnetic impurity. This Hamiltonian represtents
the interaction between one impurity spin and electrons at~x = 0.

The perturbation theory up to second leading order terms gives divergent be-
havior ofρ(T ) at T = 0:

ρ(T ) ∼

[

λ +νλ 2ln
D
T

+ ...

]2

(2)

whereD is the band width andν is the density of states. We can immediately

ask one question: what happends at the temperatureT ∼ TK = De−
1

νλ ? At this
temperature, the second orderO(λ 2) term will be comparable to the first order
term O(λ ). It is clear that the perturbation theory is no longer trustful in this
case and we can expect that higher order terms in perturbation theory will also
contribute to the expansion at sufficiently low temperature.

Wilson developed the idea of renormalization group approach, which provides
a powerful tool to understand and solve such questions. Nozieres following the
idea of Anderson and Wilson developed a simple picture of thelow temperature
behavior of Kondo problem in 1974. Kondo model was also solved by the method
of Bethe ansatz in 1980, which gives the specific heat and magnetization.

2 Renormalization Group Approach to Kondo Ef-
fect

Like usual renormalization group method, we could integrate outψ(k) for k far
from fermi wave-vectorkF , and succesively reduce the band width D. We could
obtain a new effective interaction after one renormalization transformation. We
suppose the coupling is weak and hence we can do above procedure perturbatively
in . We could expand the intereaction term

T exp

[

−iλ
∫

~S(t) ·ψ†~σ
2

ψ(~0, t)

]

(3)
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in the interaction picture. Through expansion of this interaction term, we could
arrange the terms order by order by usual Feynman diagrams. For example, the
second otder inλ term is

−
λ 2

2

∫

dtdt ′T (Sa(t)Sb(t ′)) ·T

[

ψ†(t)
σa

2
ψ(t)ψ†(t ′)

σb

2
ψ(t ′)

]

(4)

where T is time ordering. Using the Wick’s theorem, we could reduce expression
(4) into

−
λ 2

2

∫

dtdt ′ψ†
[

σa

2
,
σb

2

]

ψT < ψ(t)ψ†(t ′) >
(

θ(t − t ′)SaSb +θ(t ′− t)SbSa
)

=
λ 2

2

∫

dtdt ′ψ†~σ
2

ψ ·~Ssign(t − t ′) < ψ(t)ψ†(t ′) > . (5)

The corresponding Feynman diagrams contributing to renormalization of the
Kondo coupling constant are shown in Fig(1).

Figure 1: Feynman diagrams to Kondo problem up to second order.

Applying renormalization group method, we need integrate out the momentum
shell D′ < k < D. The easiest way to work out the integral is to write it in the
momentum space instead of real space:

∫

d3k
(2π)3

∫

dω
2π

[

1
iω +δ

+
1

iω −δ

]

i
ω − εk + iδ sign(εk)

∫

d3k
(2π)3

1
|εk|

≈ 2ν
∫ D′

D

dε
ε

= 2ν ln
D
D′

. (6)

Hence we can get RG recursion relation equation:
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δλ = νλ 2ln
D
D′

, (7)

equivalently, it can be written as

dλ
dlnD

= −νλ 2. (8)

To see how Kondo coupling depands on the band width D, we can integrate
the equation (8):

λe f f (D) =
λ0

1−νλ0lnD0
D

. (9)

Let us look at physics of equation (9). We find there is a fixed point in Kondo
problem :λ = 0, which separates two physical phases. Forλ0 > 0 (antiferromag-

netic phase), the effective Kondo couplingλe f f (D) diverges atD ∼ Tk ∼ D0e
− 1

νλ0 .
In this case, as we discussed above, the perturbation theoryfails at low tempera-
ture. Forλ0 < 0 (ferromagnetic phase), effective coupling coustantλe f f → 0.We
should notice that the physical behavior at temperature T isdetermined by effec-
tive Kondo couplingλe f f (T ) rather then bare coupling. Thereby it is trivial for
ferromagnetic case sinceρ(T )→ 0 asT → 0. It is interesting to ask what happens
for antiferromagnetic case?

3 Low T Behavior of Antiferromagetic Kondo Model

From last section, we find thatλe f f →∞ asT → 0 for antiferromagnetic case. This
case was first studied in detail by Nozieres in 1975. We could consider the strong
coupling limit of a lattice model. For simplicity, we only consider the model in
spatial dimensionD = 1. The Hamiltonian is

H = t ∑
i
(ψ†

i ψi+1 +ψ†
i+1ψi)+λ~S ·ψ†

0

~σ
2

ψ0. (10)

Strong coupling limit meansλ >> |t|. Hence we can do perturbation the-
ory in t instead ofλ . Let us look at physics picture in general before doing any
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serious calcualtion. What is the ground state configuration of Hamlitonian (10)
in strong coupling limit. At site 0, one electron must form a singlet with impu-
rity :| ⇑↓> −| ⇓↑>. (We assume spin of impurity is half). Electrons can hop
on all sites on the latter except site-0, since it would destroy the singlet state and
henc cost an energy∆E ∼ λ >> t. Therefore we can simply form free electron
Bloch states with boundary conditionφ(0) = 0, whereφ(i) is the single-electron
wavefunction. At zero Kondo coupling, this model can be solved exactly: one
parity even single particle wavefunctionsφ(i) = coski and one parity odd sin-
gle particle wavefunctionsφ(i) = sinki. However, in the strong coupling limit,
since the boundary conditionφ(0) = 0, we find parity even wavefunctions be-
comeφ(i) = |sinki|, while the parity odd ones do not change.

The parity even channel in strong couping limit correponds to a π/2 phase
shift to the s-wave channel:

φ j ∼ e−ik| j| + e+2iδ eik| j|, δ = π/2. (11)

This shows that Kondo impurity effect can be repalced by freeelectron theory
with a non-magnetic s-wave scattering withπ/2 phase shift. How could we under-
stand this statement physically? This is because of screening effect as explained
below.

We can linearize the spetrum near Fermi surface. If particle- hole is symmetry,
the Fermi surface lies midway between levels or on a level as shown in Figure (2).
Two pictures only differ by a phase shift.

Wilson used numerical RG method to calculate the low-lying spectrum nu-
merically. The result indicates thatλ renormalizes to∞ even if it is initially small
as we expect. However, in real system, electron screening effect should be taken
into account, which gives a length scale in the problem

ξ ∼
vF

TK
∼

vF

D
e1/νλ . (12)

That means wavefunctions of screening electrons are no longer extended to
whole space. It should have a length scaleξ . We get low energy Bloch states
of free electrons only for|k− kF | << 1/ξ ,i.e. l >> ξ . The free electron theory
with a phase shift picture corresponds to an universal stable low energy fixed point
for the Kondo problem. Kondo impurity problem is equivalentto a non-magnetic
s-wave scatter with aπ/2 phase shift at Fermi energy.

5



Figure 2: Free fermion energy level

More interesting low-T behavior comes from the leading irrelevant operator.
Although we find that impurity spin has been screened from thedescription of the
low-T physics, a certain interaction between electron are generated at impurity site
only in the process of eliminating the impurity spin. How could we write these
effective interaction between electrons? One way is to start from microscopic
theory, however it is fairly compicated. Following the spirit of Landau, we can
determine these terms by simply writing the lowest dimension operators allowed
by symmetry.

For simplicity, we only work with left-movers in 1D case. Hence the intereac-
tion can be written in terms ofψL. The dimension analysis determines the various
dimension of operators in 1D field theory

H =
∫

dxψ†
Li

d
dx

ψL + .... (13)

The lenght and time dimensions are same (we convert them withvF ), the di-
mension ofψ field is

[H] = E = 1⇒ [ψ] = E
1
2 = 1/2. (14)

If we assume the interactions are local, then they can be expanded by some
local operators
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δH = ∑
i

λiOi(x = 0), (15)

with dimension[λi]+ [Oi] = 1. Henceλi had negative energy dimension, i.e.
irrelevant, if [Oi] > 1. One usually difines a dimensionless coupling constant in
RG theory. If[λi] = E−a, then the dimensionless coupling constant can be defined
as

λ̃i ≡ λiD
a. (16)

From RG recursion relation

dλ̃i

dlnD
= aλ̃i, (17)

λ̃i decreases as loweing D. So what are the lowest dimension operators allowed
by symmetry? Ford = 1 case, we might consider operatorψ†α(0)ψα(0). How-
ever this operator is not allowed because it breaks the particle-hole sysmmtry.
This term actually contributes to a potential for scattering, which adds a term
to the phase shift. Next, ford = 2, there are two operators allowed: one is
iψ†α d

dxψα(0)− i d
dxψ†αψα(0), which produces a k-dependent phase shift; another

term isψ†↑ψ↑ψ†↓ψ↓. This term represents the interaction bewteen electrons in-
duced by impurity spin flip. It turns out these are the only twooperators allowed
with dimensiond ≤ 2. No d ≤ 1 operators allowed implies that the low energy
fixed point is stable.

Using Wilson’s numerical method or Bethe ansatz, one can calculate these two
coupling constants. However, both of these two methods are quite complicated.
Dimensional analysis is helpful to understand the problem qualitatively. Both
of these two coupling constants have dimensionE−1, hence we expect them to
be O(1/TK) by a standard scaling argument. ForTK << D(λ << 1), Nozieres
aruged that these two irrelevant coupling constants have a universal ratio, thereby
there is only one parameter ( Wilson number ) describing the whole theory. This
irrelevant coupling constant governs all low temperature behavior. We can do
perturbation theory in the irrelevant coupling constant∼ 1/TK.

For the specific heat, we find
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C ∼
π

3vF
lT +a

T
TK

. (18)

This is the specific heat of one-dimension system with a single magnetic im-
purity located at origin. Physically, this expression is very easy to be understood.
The first term is just usual specific heat for the free electronsystem. It is bulk
property, hence it should be proportional to the size of the systeml. The second
term is independent of the size of system and is due to impurity at origin. Why
is this impurity specific term proportional toT? That is the result of first oder
perturbation theory in the irrelevant coupling constant oforderO(1/TK). The lin-
earity of T is fixed by simple dimensional analysis. To generate one dimensional
result to three dimension, we need only simply multiply the first term by the ratio
νV/(l/2πvF), i.e. the ratio of densities of states per unit energy, and second term
by the number of impurities.

Supposing the spin of impurity is 1/2, then impurity of the system at high T is

S(T ) =
πl
3vF

T + ln2. (19)

The system entropy at low T can be expressed as

S(T ) =
πl
3vF

T +
aT
TK

. (20)

The first term is propotional to the size of system, which is the entropy back-
ground for free system. What we are interested in is the entropy for the impurity,
hence we can substract this entropy background, we write

Simp ≡ S(T )−
πl
3vF

T = g(T/TK), (21)

where g is an universal scaling function for weak bare coupling. The behavior
of g(T/TK) of small T/TK can be determined by RG-improved weak coupling
perturbation theory. However, the knowledge of the behavior of g for whole range
T/TK is a property of the universal crossover between fixed pointsand is found by
Bethe ansatz. The qualitive behavior of the impurity entropyis shown in Figure.
3.
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Figure 3: Qualitative behavior of the impurity entropy.

We could also calculate the susceptibility. At high T, we expect our result
should be approximately like a free spin:

ξ ∼
l

2πvF
+

1
4T

. (22)

At low T, the susceptibility can be computed by the RG improvedperturbation
theory:

ξ ∼
l

2πvF
+

1
4T

[

1−
1

ln(T/TK)
+ ...

]

. (23)

Hence the impurity susceptibility reads

ξimp ≡ ξ −
l

2πvF
=

1
T

f (T/TK), (24)

where f (T/TK) is another universal scaling function. See Figure (4).
The low T resistivity for the dilute impurities can be computed by RG group

method up to second order,
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Figure 4: Qualitative behavior of the impurity susceptibility.

ρ ∼ ρu
[

1−d(T/TK)2] , (25)

whereρu = 3ni
πν2v2

F e2 is unitary limit resistivity andd is some dimensionless con-

stant. Second order perturbation theory in the irrelevant couping constant gives
the contribution of the second term in expression (25).

At high T, as we state at the begining, the usual naive perturbation thoery still
holds, hence the result is just given by equation (2):

ρ(T ) ∼ ni
[

λ +λ 2ln(D/T )+ ...
]2

. (26)

The scaling behavior of resistivity is sketched in Figure (5).

4 Summary

We discuss the Kondo effect based on renormalization group method in this essay.
We derive the RG recursion relation and find that there have twoseparate phases:
antiferromagnetic phase and ferromagnetic phase in Kondo problem. Detail dis-
cussion of low T behavior of the antiferromagnetic Kondo problem is given. An
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Figure 5: Qualitative behavior of the resistivity.

universal scaling behavior of impurity specific heat, impurity entropy, impurity
sesceptibility and resistivity is shown at the end of the essay.
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