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Abstract

In this paper, | want to review theoretical models of two social phenontbeadynamics
of an applauding audience and the collective motion of people in a stadiannfpa La Ola
wave. In particular, | want to stress how phase transitions occur in theseetical models
and how these transitions emerge macroscopically.

1 Introduction on the number of initiators and how it is de-
cided in which direction the wave will prop-

The rapid development of computation&9ate. [n sectiod i want to discuss how a
power during the last decades made it possiiigPlausing audience which may form a syn-
to study accumulated data of collective phg_honlced state. Since the underlying t_heoretl-
nomena. Hereby, it turned out that the toof@! model - the Kuramoto model - that is used
and concepts used in statistical physics canedescribe the synchonication can be treated
applied very successfully to study these sort gfalytically, I will discuss the model itself in
systems: The collective motion of a large nunt?€ beginning and derive what condition en-
ber of individuals interacting with each othe®Pes the synchronication. However, the ap-
gives rise to a macroscopic observable ordef@fation of statistical physics in the field of
patterns. However, in this paper | want to fos_oc_lal dynamics is very wide and a Io_t of inter-
cus on collective phenomena that arise in soSting research has been done during the last
cial systems. In sectio | want to discuss Y&&'s: A.n excellent overview is given by a pa-
the research that has been done by Farka®@k Published by Castellano, Fortunato, Santo
al. and Farkas and Vicsek,[2]. In their &nd Loretog].

work, they introduced a model that was able to

reproduce the dynamics of a Mexican waves,

known from sport events in football stadiums

around the world. In particular | will stress

how the occurence of such a wave depends
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2 Mexican waves 2.1 Modeling the wave

Based on the conclusions mentioned previ-

ously they developed a modekhere specta-
In this section | want to discuss the dynamgs in the stadium are represented by particles
ics of La Ola Waves known from big sporipn 7, x I, = 400x80 = 32.000. Furthermore,
ing events. In particular, | want to stress theariodic boundary conditions are appliedzin
question how the crowd is able to make thfrection. However, spectators are considered
collective decision in which direction the Lgg particles who can appear in three differ-
Ola wave should travel and how this decisioght states. These states correspond to differ-
is affected by the consideration of short anght motion sequences a spectator is proceeding
long range interactions. A La Ola wave is Creghile participating in a La ola wave. In total,
ated by spectators in a stadia when they stafghkas and Vicsek differentiated between three
up rise their arms and successively sit dowyiferent particle states: the resting, the active
when their neighbors start with the same sgnq the refracting state. At the beginning of
quence of motion. This system, consisting @he simulation every particle on the lattice in
individuals that synchronize their behavior, igitialized in the resting state. At every time

a nice example of crowded behavior and hggept the total activation effectV; on every
been studied by Farkas et all] [and Farkas resting particle is calculated:

and Vicsek P]. In their work they proposed a

model that was able to reproduce main proper- W, = G, Z w;_yi(7) 1)
ties of a La Ola wave like form, size, velocity, i ! ’
stability and gives a possible explanation how Jactive

the propagating direction of the wave is de- is a measure how strongly thith particle

cided. Farkas and Vicsek based their model |srfaffected by the active particles in its neigh-

extensive analysis of recorded videos ShOWiF)%rhoo d. Only particles in the active state in-
waves in stadia with over 50.000 participan ' . : :
P P Fuence other particles and only particles in

and a online survey with 75 participants. Th%e resting state can be influenced.Jif ex-

main conclusions they draw from this analy-

sis were: (1) The wave is triggered by a fe(\geds theith particle’s individual activation

: : resholdC; the particle changes to the ac-
dozen people standing up simultaneously, ‘ » .
Peop g up y e state with probability) < p < 1 in the

it is usually one wave that goes in clockwis : .
direction and (3) spectators are interacting gr?Xt time stepf + At .and steps determ|n|§t|-
local as well as on a global scale. Inspired b lly through .th.enA “T“e steps of the active
this experimental results they concluded th ate. Once f'n'Sh.ed it changes to the refract-
ng state and again steps through anothgr

the wave is influenced by short- as well as lof] o )
y tine steps deterministically before it returns

range interactions. Furthermore, a very sh(%ot the resting state where it may become ac-

time after the wave is initiated, the crowd in_ive again. That particles are not activated de
stantaneously decides the traveling directiin gain. P

of the wave. Thereby, the clockwise directio erministically onceC; is exceeded, takes into

is somewhat preferred giving rise to left-right 1actually, their model is based on a model that was
asymmetry. studied earlier by Greenberg and Hastingjs [




account that people react differently to enwwere the static parametet was introduced.
ronmental influences. Farkas and Vicsek sEte velocity v; is positive as seen from the
C; = C for every particle but introduced ansth particle if the active region is moving away
other stochastic parameter to take account ord negative if the active region is approach-
individual properties of the spectators. Howng. Note thatS — 0 gives the local version
ever, two different types of interaction weref the modelG;, = 1. S is a parameter that

tested. governs the long range interaction of the sys-
tem. The functional form of this interaction is
2.1.1 Local interaction inspired by the idea that spectators are more

_ influenced by a wave that approaches them.
In the local version of the model the long range

interaction term is set t&; = 1 for every par-
ticle and an isotropic, exponentially decaying.2 Simulation results
interaction with characteristic length scafe

is introduced: A wave was triggered by moving a group of

particles at L, /2, L, /2) with radiusp = 3 to
Wi the active stateZ]. In simulations where only
where K, = Zm# e~ Immll/R js a normaliza- short range i_nteractions were pres_éht: 0, _
tion constant. The design of the local interatwo symmetric waves propagating in opposite
tion term was motivated through the idea thdirections occur. This result did not change as
only individuals in the close neighborhood infong asS ~ 1 (see figure3). However, if S
fluence each other. However, no direction BEcomes larger, it happens that the symmetry

— Ll olmsl/R
=K, e "

prefered in this interaction. between the two propagating waves is broken.
Soon after initiation, one of the wave is se-
2.1.2 Local & global interaction lected and the other waves stops propagating

[2]. The symmetric solutions becomes unsta-
In the global version of the model the averagste if |0ng range interaction is present. How-
distancer between the active and thih parti- ever, there is no left-right asymmetry. Both
cle was calculated and weighted with an expgirections are selected equally ofte2].[ To

nential factor: study the influence of on the symmetry of
o 3 Axgje—Awi/X (3) the solutions in more detail, a order parame-
Ti = S eBwi /X ter is introduced: During simulation, for each

The sum runs only over active particles argf'ticle along the ling = ,/2 the time of

the Az;; is the shorter of the two possible disf_irst activation is saved as a function of the co-
]

tances allowed by the periodic boundary cofifdinatez. The survival timet,t, is no de-

ditions. X is the characteristic lenght scale df"€d as the timebelow which the first ac-
the long range interaction anfd < X. With tivation times showed an increasing function

7; being the derivative af; the global interac- when moving away from the initiating spot left
tion term@. becomes: and right” [2]. This is indeed an order param-

_ eter: An asymmetric wave has = 0. An
Gi(5;) = L, if v; <0, 4) stable solution has a constant survival time,
o e 5% ifg; >0 namely the time that is needed till the waves



meet at the lattice. Figuréshows the proba-the decision process of the propagation direc-
bility distribution of ¢, for different values of tion. The local interaction term was modified
S. Clearly, one can see the distinct peaks. THig anisotropic factor:

distribution is analogous to the distribution of 3

the order parameter of a system close aatran- e MR (1 = §) + 6 cos(m — 9)) 5)
sition point where the system performs a dis- " K;

continuous phase transitiong|[ The system : ,
changes from the symmetric solution with tw; here¢ is the angle betweeft; and theith

waves and large, to the asymmetric solutionPaticle local reference frame¢ = 0 If 7i;
with only one wave and small. The reason points to the left and the clockwise direction

is positive. Depending on the value &f the

hy the t ition i t harply is th
Iy the Hansiuon 18 not Very sharply 15 }eft-right symmetry can now be broken. If

the number of initiating particles is finite and”, . . .
therefore the data is influenced by finite sc -Increases the probat_)lllty of a right moving
ing effects. The inset of figuré supports this wave increases and V.V'” be completgly domi-
conclusion. The average survival timet, > nant over the left moving wave (see flgu@:
aling of the critical value is not

is plotted as a function of. The data col- Howevg;, the)s(c_m 5
lapses as expected in the vincity of the criticgﬁeCte e X [2].

point.S.. The transition becomes sharperias Besm!es the symmetry break!ng, Farkag et
increases. The critical value of scales like al. studied the influence of the size of the trig-

S. < X-Y2[2]. Farkas etal. showed thaigering group. F_iguré%b shows the probabil-
the long range interaction play an importa that a wave is observed depending on the

part in how the travelling direction is decidecP'?® of the triggering group and the activation

It seems an reasonable assumption to des‘?ﬁasmlda In this simulation they used a

the interaction like they did, namly that an a lightely diﬁ‘eren'F decision rule when a parti-_
proaching wave should influnce more than e becomes active. Instead of a general acti-

passing wave. The model is able to produggtionthresholcd? and a activation probability,

an stable asymmetrical solution but still, thefe/€"Y particle has its own aciivation threshold
are two waves in the beginning. In real Me _i.chos.enéagdomly' O_Ut,(ﬁ]AC; ctAd] a(?d
ican waves the direction of the wave is ddt 'S actived deterministically onc#’; > Ci.
cided much faster and consequently only OH’ge re_sults show thqt_the probability is sh_arply
wave can be observed right from the begiﬁ-hanglng once a ritical parar_neter_ set s ex-
ning. In addition, the ratio of waves to the Iefl?eeded' This suggests that triggering a Mex-

and to the right was one. This seems uns$2" Wave requires a critical amount of initia-
isfying in the context of the the experimenta{PrS'

resulsts mentioned in the beginning. Further-

more, the triggering process, setting a number : :
of particles uncorrelatetly to the active stateb% The applaUdmg audience

very unrealistc. However, Farkas et al. mOdllt' is common to applaud after a good theater

fied the global model assuming that people rSRoW. People show their appreciation of the

act_asy mmet”c,a”Y to evgnts to their left or t erformance and clap their hands collectively.
their right. If this is true, it should also affec

owever, from time to time it happens that the
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applause synchronizes resulting in a rhythmticis influence is describes b¥(6;). Using
clapping noise. This phenomena of synchroemputer simulations, Winfree made an im-
nization can be studied in the context of th@ortant observation: If the spread of the natu-
Kuramoto model. Kuramoto’s modeb,[6] is ral frequenciesu;is large compared to the cou-
perfectly suited to understand synchronizatiqgoiing strength, the oscillators do not synchro-
processes both quantitatively and qualitativelyize. However, if the spread decreases there is
An nice example the Kuramoto model can leecritical point, once crossed a fraction of rota-
applied to is an applauding audience that syiors suddenly synchronize oscillating all with
chronizes its clapping rythm7[ 8]. A great the same frequency. This fraction increases if
inherent feature of the Kuramoto model is th#te spread decreases furthéf]] Based on

it is possible to analytically derive a conditioWinfree’s, model Kuramoto published a pa-
that the oscillators may synchronize. Since thper in 1975 b, 6] where he showed that for
resultis so enlightening, | would like to presergny system of weakly coupled oscillators with
a deviation of this cirteria first. Subsequentlimit cycle, the long term dynamics of the sys-

I will explain how this criteria can be appliedem can be described with only one function
to the applauding audience. depending on the phase difference of the con-
sidered oscillatorsX (6,)Z(0;) = L';;(6; —6,).
Furthermore, by simplifyind;;(6;, — 0;) =
K/Nsin(0; — 6;) with K > 0, he was able
Great effort was put into the development ¢ solve the model analytically giving a math-
a mathematical model to describe the phematical condition when synchronization oc-
nomenon of collective synchronization of aaurs. In this simplification, the interaction
enormous number of interacting oscillatorgeight and the functional form is the same for
Examples for synchronization processes cewery interaction pair. The/N factor ensures
be found everywhere in nature and subsiéatthe thermodynamic limitY — oo) exists.
quently cached the interest of scientists. Ahe is called the Kuramoto model:

3.1 The Kuramoto model

beautiful introduction to this topic with more _ o
interesting examples of synchronization pro-  0; = wi + > sin(0; - 6;) ()
cess and how the occur is given b9j.[ In j=1

1967, Winfree 10] suggested a model wherand: = 1,..., N [5]. He further assumed
every oscillator is coupled to a mean frequendlyat the frequencies are distributed according
that is generated by the hole population:  to a density functiong(w). For simplicity
N this function shall be unimodal and symmet-
. ric about a mean frequendy: ¢(Q2 + w) =
O = wi + (Z X(91)> Z(6:) (©) 42— w). Ameasure of how synchronized the
=t oscillators are is given byp[:

fori =1,...,N. 6; € [0,2n] is the phase of , 1 & "
the ith oscillator in the laboratory frame and re' = N D el (8)
w; 1ts natural frequency. Each oscillator is af- j=1

fected by the population influence describeg@can be thought of as the average phase of all
by X(60;). The answer of théth oscillator to oscillators and- is a meassure of phase coher-
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which is exactly equatioid. Thus it follows:
= 0; = w; + Krsin(y) — 6;) (20)

i % . Every oscillator is influenced only by the mean
field parameters andi. Suppose for a second
. thatr equals zero, so there is no synchroniza-
3 oo tion. Equation10 tells us that every oscillator

oscillates with his own natural frequency.rif
increases the coupling to the mean phagee-
comes stronger pulling the oscillator towards
Figure 1: Geometric interpretation of order pdhe mean frequency. Instead of solving equa-
rameter, equatio®. The black dots correspondion 10 in general, Kuramoto was now look-
to the phase#,. The center is given by theing for steady solutions where the system is
complex numbere™. If the system is com-already in the synchronized state and any non
pletely disordered (like in case (a)) r is approxequilibrium behavior died off. Soy() is con-
imately zero. If every oscillator is in the sametant and)(¢) rotates uniformly at a frequency
phaser =~ 1 since all vectors are pointing irf2. If we transform the system into the frame
the same direction (case (b)). Frofr]. which is rotating at this frequencf: 6, —

0; + Qt (note that this implieg(w) = g(—w)),

1 is a arbitrary constant and therefore can be
ence of the system. If every oscillator is exa€t t0 zeré. In the new frame, equatiohO
actly in the same phagke = ¢ the right hand reads:
side of equatio simplifies toNe andr = 1 : .
with v = 6. On the other hand, if the sys- 0i = w; — Krsin(;) (11)

tem is completely disordered, meaning that the,is equation determines the steady solutions
0; are distributed uniformly over the interval, ihe rotational frame. Oscillators withy;| <
0; € [0,27[ the sum equals zero and thereforg . il have the steady solutio, = 0 and

r = 0. To make this idea more clear one caly . — Kr sin(6;) [12. They freeze at a
imagine the state of every oscillator as a"eCtﬂértizcular phas@-z: arcsin(w,/Kr) in the

pointing from the origin to the correspondinge,y frame. These oscillators are called locked
phase on a unit circle (see figu: The mean gjnce they are locked the the frequerfeyin
field character of Kuramotos model becomese original frame. Oscillators withuw;| >
obvious if one rewrites equatiohin terms of - \vil not able to frequency lock); ; 0.
randy [6]. Multiplying both sides of equationty, ensyre that and« will still be constant

8 by e, subtracting its own complex conjugyen with this drifting oscillators Kuramoto as-
gate and dividing both sides By yields: sumed that the drifting oscillators from a sta-
tionary distribution on the circle. So, in areas
of the unite circle where less oscillators are,

N
1 . . .
rsin(y —6;) = N E sin(0; — 6;) (9) >This means setting(t) = 0if ¢ = 0.
st SNaturally,w; — w; + Q2 in the new frame.

(e} |r| =018 () [l =099
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they have to move faster than in areas were tNete that|w| < Kr implies € [0, 7]. Obvi-
density is high. Lep(6, w)dd be the fraction of ouslyr = 0 is always a solution for any value
oscillators with frequency that lie betweerd of K. A second solution can be obtained by

andd + df. Stationarity implies then: letting » — 071 in equation18. This gives
C C us the critical value K when oscillators start to
0,w)=— = 12 i '
p(0,w) 6~ o~ Krsm(@) (12) synchronize collectively.
2
. . 2w o Kc = 19
with C' defined by/;" pdf = 1. 79(0) (19)

Since we are looking for steady solutions in
the rotational frame only) = 0 and equation Kuramoto showed inf, €] that in the spe-

8 becomes cial case of a Lorentzian density(w) =
L 734’;2 equation18 can be integrated analyti-
J— ’L'ej 1 H .
r= Z e (13) cally yielding:
7j=1
. . : [, K
with 6, obtaining equatiori2. The sum can r=yl-4 (20)

be split into the locked and drifting oscillators

T = Tioeked +Tarise- The locked oscillators confor all K > K.. This is very important re-
tribute: sult. The system of oscillators can not syn-

chronize unless the coupling strength exceeds

1 W
Tiocked = 7 > cos(0(wi) + i7--(14) a certain critical threshold. Once this thresh-
locked old is exceeded, the system performs a phase
_ % Z cos(0(w)) (15) transition. The population is divided into os-

cillators that freeze at a particular frequency
(2 and oscillators that drift acceleratingly and
= /|w|<Kr cos(0(w))g(w)dw (16) decceleratingly around the unite circle giving
- rise to partial order in the system=£ 1. The
in the limit of N — oo andw = Krsin(f). fraction of drifting oscillators becomes smaller
Recall, that the natural frequencies are ggK increases further. In the limifk — oo all
sumed to follow a symmetric unimodal distripscillators are frequency locked and we have
butiong(w) about zero in the rotational frameperfect coherence = 1 (See figureZ)_ Of
The contribution of the drifting oscillators is: course, the sinusoidal simplification that was
2 ; made is not true in general and might even not
Tdrift = / / e”g(
0 |w|>Kr

locked

w)p(0,w)dwdf = 0(17he a good approximation in most cases. How-
ever, it supports us with the possibility to de-
since equatioril2 obtains: p(6 + 7, —w) = rive a formula that gives us an understanding
p(,w), equation12 and g(w) = g¢(—w). how synchronization can arise. The Kuramoto
Changing the integration variable in equatiamodel is still discussed controversely and at
16, finally yields to a self consistent equatiofots of questions are still unanswered. For ex-
for r: ample it is still not proven that the steady so-
T, _ lution » # 0 is stable L2] nor is it proven
r=Kr /0 cos”(0(w))g(Krsin(0))df (18) that Kuramotos approach, that was presented
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r A short time average of the recorded signal af-
ter digital preprocessing. Figui® shows the
local signal that was recorded next to an indi-
vidual. It can be observed that at about 12
seconds, the signal becomes periodic. The cal-
culated order parameter fd increases. More-
over, the long time (3 seconds) noise intensity
signal, 7c, decreases when the clapping be-

= Ccomes more synchronized having its minimum

K where the order parameter is maximal. Figure
7d shows the calculated clapping frequency of

Figure 2: Bifurcation in the Kuramoto modebp, individual as a function of time. One can

for unimodalg(w). From [13]. see that the individual changes its clapping fre-

guency to approximately half the frequency
here, is rigeriously valid in the thermodynamiwhile the order parameter is rising. Their con-
limit [ 12]. However, the Kuramoto model waglusion was that there are two different types of
applied successfully to a wide range of prol§lapping. A type I clapping when individuals
lems and lots of highly interesting modificaapplaud independently and a type Il clapping
tions like stochastical perturbation have bedfat appears when the audience is synchro-
developed 13, 14]. A beautiful and readablenized. In a second experiment, they recorded

introduction to the Kuramoto Model is giverthe clapping of 73 high school students that
by Strogatz 12]. were asked to clap as they would right after a

good theater performance (type I) and as they

. o would during synchronized clapping (type II).

3.2 Experlmental findings  and This experiment was repeated with one student
conclusion during one week for 100 times. The results of

In 2000 Neda, Ravasz and Vicsek publishe@is_ experimentwere:_ (1)_The frequency distri-
two papers 7, 8] where they showed thatbutlon of type | clapping is larger than of type

R . 1 11 ~ H
an applauding audience can be analyzedlbglapp'ng4' DY/D™ ~ 2.5 (figure 7f). A

a population of oscillators within the frame-s'm'lar behavior can be observed from the 100

work of the Kuramoto model. Their concluMeasurements on one individual (figure).

sion is based on two experiment [B]. In (2) The ratio of the peak-frequencies of type

the first experiment they recorded the applau_'sté) type Il is appro>_(im_ateIQ = (fjgure: 6) as

after theater performances using microphon'égarl _be observed in figuré,g. Neda, Ravasz _
that were hanging from the ceiling as well a%nd YICSGk concluded, that people Iqwer their
placed in the neighborhood of randomly Sfjapplng frequency to a value that is half as

lected individuals. They define and calcula arge as befor_e in order to achieve synchro-
an oder parameter.,, [7], similar to the one nization. This is exactly what one would have
exp ’

in equation8 as well as the noise intensity Ofsxpected considering the audience as a popula-

the signal, averaged over 3 seconds. A typical4a Gaussian was fitted through the data to obtain the
result is shown in figuré. 7a shows the globaldispersionsT]

K,
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tion of oscillators in the Kuramoto model witresting in the context of understanding syn-
0; being the clapping phase of the individuahronization in in general. Using compara-
and w; its natural clapping frequency. Solvtively easy mathematical tools, a strong cri-
ing equationl9 in the case of a Gaussian freteria could be derived giving a deep intuitive
quency distribution with dispersioP yields: understanding of how synchronization occur.
K. = (/2 D. Synchronization is only pos-Farkas etal. also pres_ented a very interesting
sible if the coupling exceeds the critical valu@‘)del for crowd b_ehawor _that might not only
be used to describe Mexican waves but also

K.. By changing from type | to type Il clap-. . .
ping the audience reduces the dispersion dﬁogeneral cases, when the dynamic of social

therefore lowers the critical coupling strengtﬂroup IS her?vny |nflufer;ced l?]yg "ttlfe fragthn.l
until synchronization is possible. Of Coursé-,lowc_—:'ver, t € poweriu methods o Stat'St'.Ca
this does not explain why people try to Synqhysws will _contrlbute to the und_erstand!ng
chronize their clapping. However, figure in- of system with a large amount of interacting

dicates that the synchronization is lost at abormambers and will hopefully lead to a deeper

20 seconds. Bda. Ravasz and Vicsek eXt_mderstanding of the complex patterns of so-

plained this due to the fact that the avera(ﬂeal Interactions.
noise decreases during synchronized clapping.
The audience might feel that this is not satis-
fying and therefore tries to increase the noise
level by clapping faster. The frequency dis-
tribution increases again and so does the crit-
ical coupling strength. The coupling among
the people may become smaller than the criti-
cal value and synchronization is lost. A quite
good example for an audience clapping ryth-
micly can be foundhere (listen carefully at
about second 8). However, the model is not re-
ally realistic since one would assume that spec-
tators are driven only by the desire to increase
the global noise level. In a more recent paper
[15] Néda et. al introduced a new model where
they treat the spectators as a two mode stochas-
tic oscillator which are only driven by exactly
this goal.

4 Conclusion

The two models that have been introduced
seem to have a lot of potential. Especially
the Kuramoto model seems to be very inter-
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a=] 5=10
l - I ) - l

Figure 3: Spontaneous symmetry breaking in the Mexican wgawelation. The increasing
brightness indicates the different states of motion of fhextator. White means standing with
hands up. Frond).

<t>
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p(tg,S) 10
0.4

Figure 4: Transition between symmetric and antisymmetigteon. From P].
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Figure 5: Probability distribution for propagating direct as a function of. From [2].
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Figure 6: Normalized distribution for the ratio of freques of type | and type Il clapping.
From [7]
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