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Abstract

In this paper, I want to review theoretical models of two social phenomena:the dynamics
of an applauding audience and the collective motion of people in a stadium forming a La Ola
wave. In particular, I want to stress how phase transitions occur in thesetheoretical models
and how these transitions emerge macroscopically.

1 Introduction

The rapid development of computational
power during the last decades made it possible
to study accumulated data of collective phe-
nomena. Hereby, it turned out that the tools
and concepts used in statistical physics can be
applied very successfully to study these sort of
systems: The collective motion of a large num-
ber of individuals interacting with each other
gives rise to a macroscopic observable ordered
patterns. However, in this paper I want to fo-
cus on collective phenomena that arise in so-
cial systems. In section2 I want to discuss
the research that has been done by Farkas et
al. and Farkas and Vicsek [1, 2]. In their
work, they introduced a model that was able to
reproduce the dynamics of a Mexican waves,
known from sport events in football stadiums
around the world. In particular I will stress
how the occurence of such a wave depends

on the number of initiators and how it is de-
cided in which direction the wave will prop-
agate. In section3 i want to discuss how a
applausing audience which may form a syn-
choniced state. Since the underlying theoreti-
cal model - the Kuramoto model - that is used
to describe the synchonication can be treated
analytically, I will discuss the model itself in
the beginning and derive what condition en-
ables the synchronication. However, the ap-
plication of statistical physics in the field of
social dynamics is very wide and a lot of inter-
esting research has been done during the last
years. An excellent overview is given by a pa-
per published by Castellano, Fortunato, Santo
and Loreto [3].
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2 Mexican waves

In this section I want to discuss the dynam-
ics of La Ola Waves known from big sport-
ing events. In particular, I want to stress the
question how the crowd is able to make the
collective decision in which direction the La
Ola wave should travel and how this decision
is affected by the consideration of short and
long range interactions. A La Ola wave is cre-
ated by spectators in a stadia when they stand
up rise their arms and successively sit down
when their neighbors start with the same se-
quence of motion. This system, consisting of
individuals that synchronize their behavior, is
a nice example of crowded behavior and has
been studied by Farkas et al. [1] and Farkas
and Vicsek [2]. In their work they proposed a
model that was able to reproduce main proper-
ties of a La Ola wave like form, size, velocity,
stability and gives a possible explanation how
the propagating direction of the wave is de-
cided. Farkas and Vicsek based their model on
extensive analysis of recorded videos showing
waves in stadia with over 50.000 participants
and a online survey with 75 participants. The
main conclusions they draw from this analy-
sis were: (1) The wave is triggered by a few
dozen people standing up simultaneously, (2)
it is usually one wave that goes in clockwise
direction and (3) spectators are interacting on
local as well as on a global scale. Inspired by
this experimental results they concluded that
the wave is influenced by short- as well as long
range interactions. Furthermore, a very short
time after the wave is initiated, the crowd in-
stantaneously decides the traveling direction
of the wave. Thereby, the clockwise direction
is somewhat preferred giving rise to left-right
asymmetry.

2.1 Modeling the wave

Based on the conclusions mentioned previ-
ously they developed a model1 where specta-
tors in the stadium are represented by particles
onLx×Ly = 400×80 = 32.000. Furthermore,
periodic boundary conditions are applied inx
direction. However, spectators are considered
as particles who can appear in three differ-
ent states. These states correspond to differ-
ent motion sequences a spectator is proceeding
while participating in a La ola wave. In total,
Farkas and Vicsek differentiated between three
different particle states: the resting, the active
and the refracting state. At the beginning of
the simulation every particle on the lattice in
initialized in the resting state. At every time
stept the total activation effectWi on every
resting particlei is calculated:

Wi = Gi

∑

j 6=i
jactive

wj→i(~rij) (1)

Wi is a measure how strongly theith particle
is affected by the active particles in its neigh-
borhood. Only particles in the active state in-
fluence other particles and only particles in
the resting state can be influenced. IfWi ex-
ceeds theith particle’s individual activation
thresholdCi the particle changes to the ac-
tive state with probability0 < p < 1 in the
next time stept + ∆t and steps deterministi-
cally through thenA time steps of the active
state. Once finished it changes to the refract-
ing state and again steps through anothernR
time steps deterministically before it returns
to the resting state where it may become ac-
tive again. That particles are not activated de-
terministically onceCi is exceeded, takes into

1Actually, their model is based on a model that was
studied earlier by Greenberg and Hastings [4].
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account that people react differently to envi-
ronmental influences. Farkas and Vicsek set
Ci = C for every particle but introduced an-
other stochastic parameter to take account for
individual properties of the spectators. How-
ever, two different types of interaction were
tested.

2.1.1 Local interaction

In the local version of the model the long range
interaction term is set toGi = 1 for every par-
ticle and an isotropic, exponentially decaying
interaction with characteristic length scaleR
is introduced:

wj→i = K−1
i e−‖~rij‖/R (2)

whereKi =
∑

m 6=i e
−‖~rim‖/R is a normaliza-

tion constant. The design of the local interac-
tion term was motivated through the idea that
only individuals in the close neighborhood in-
fluence each other. However, no direction is
prefered in this interaction.

2.1.2 Local & global interaction

In the global version of the model the average
distancex between the active and theith parti-
cle was calculated and weighted with an expo-
nential factor:

x̄i =

∑

∆xije
−∆xij/X

∑

e∆xij/X
(3)

The sum runs only over active particles and
the∆xij is the shorter of the two possible dis-
tances allowed by the periodic boundary con-
ditions.X is the characteristic lenght scale of
the long range interaction andR ≪ X. With
v̄i being the derivative of̄xi the global interac-
tion termGi becomes:

Gi(v̄i) =

{

1, if v̄i < 0,

e−Sv̄i if v̄i ≥ 0
(4)

were the static parameterS was introduced.
The velocity v̄i is positive as seen from the
ith particle if the active region is moving away
and negative if the active region is approach-
ing. Note thatS → 0 gives the local version
of the modelGi = 1. S is a parameter that
governs the long range interaction of the sys-
tem. The functional form of this interaction is
inspired by the idea that spectators are more
influenced by a wave that approaches them.

2.2 Simulation results

A wave was triggered by moving a group of
particles at(Lx/2, Ly/2) with radiusρ = 3 to
the active state [2]. In simulations where only
short range interactions were presentS = 0,
two symmetric waves propagating in opposite
directions occur. This result did not change as
long asS ≈ 1 (see figure3). However, ifS
becomes larger, it happens that the symmetry
between the two propagating waves is broken.
Soon after initiation, one of the wave is se-
lected and the other waves stops propagating
[2]. The symmetric solutions becomes unsta-
ble if long range interaction is present. How-
ever, there is no left-right asymmetry. Both
directions are selected equally often [2]. To
study the influence ofS on the symmetry of
the solutions in more detail, a order parame-
ter is introduced: During simulation, for each
particle along the liney = Ly/2 the time of
first activation is saved as a function of the co-
ordinatex. The survival timetsts is no de-
fined as the time”below which the first ac-
tivation times showed an increasing function
when moving away from the initiating spot left
and right” [2]. This is indeed an order param-
eter: An asymmetric wave hasts = 0. An
stable solution has a constant survival time,
namely the time that is needed till the waves
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meet at the lattice. Figure4 shows the proba-
bility distribution of ts for different values of
S. Clearly, one can see the distinct peaks. This
distribution is analogous to the distribution of
the order parameter of a system close a a tran-
sition point where the system performs a dis-
continuous phase transitions [2]. The system
changes from the symmetric solution with two
waves and largets to the asymmetric solution
with only one wave and smallts. The reason
why the transition is not very sharply is that
the number of initiating particles is finite and
therefore the data is influenced by finite scal-
ing effects. The inset of figure4 supports this
conclusion. The average survival time< ts >
is plotted as a function ofS. The data col-
lapses as expected in the vincity of the critical
pointSc. The transition becomes sharper asX
increases. The critical value ofS scales like
Sc ∝ X−1/2 [2]. Farkas et al. showed that
the long range interaction play an important
part in how the travelling direction is decided.
It seems an reasonable assumption to design
the interaction like they did, namly that an ap-
proaching wave should influnce more than a
passing wave. The model is able to produce
an stable asymmetrical solution but still, there
are two waves in the beginning. In real Mex-
ican waves the direction of the wave is de-
cided much faster and consequently only one
wave can be observed right from the begin-
ning. In addition, the ratio of waves to the left
and to the right was one. This seems unsat-
isfying in the context of the the experimental
resulsts mentioned in the beginning. Further-
more, the triggering process, setting a number
of particles uncorrelatetly to the active state is
very unrealistc. However, Farkas et al. modi-
fied the global model assuming that people re-
act asymmetrically to events to their left or to
their right. If this is true, it should also affect

the decision process of the propagation direc-
tion. The local interaction term was modified
by anisotropic factor:

wj→i =
e−‖~rij‖/R ((1− δ) + δ cos(π − φ))

Ki

(5)

whereφ is the angle between~rij and theith
particle local reference frame.φ = 0 if ~rij
points to the left and the clockwise direction
is positive. Depending on the value ofδ, the
left-right symmetry can now be broken. If
δ increases the probability of a right moving
wave increases and will be completely domi-
nant over the left moving wave (see figure:5).
However, the scaling of the critical value is not
affectedSc ∝ X−1/2 [2].

Besides the symmetry breaking, Farkas et
al. studied the influence of the size of the trig-
gering group. Figure8b shows the probabil-
ity that a wave is observed depending on the
size of the triggering group and the activation
thresholdC. In this simulation they used a
slightely different decision rule when a parti-
cle becomes active. Instead of a general acti-
vation thresholdC and a activation probability,
every particle has its own activation threshold
Ci chosen randomly out of[c−∆c ; c+∆c] and
it is actived deterministically onceWi > Ci.
The results show that the probability is sharply
changing once a critical parameter set is ex-
ceeded. This suggests that triggering a Mex-
ican wave requires a critical amount of initia-
tors.

3 The applauding audience

It is common to applaud after a good theater
show. People show their appreciation of the
performance and clap their hands collectively.
However, from time to time it happens that the
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applause synchronizes resulting in a rhythmic
clapping noise. This phenomena of synchro-
nization can be studied in the context of the
Kuramoto model. Kuramoto’s model [5, 6] is
perfectly suited to understand synchronization
processes both quantitatively and qualitatively.
An nice example the Kuramoto model can be
applied to is an applauding audience that syn-
chronizes its clapping rythm [7, 8]. A great
inherent feature of the Kuramoto model is that
it is possible to analytically derive a condition
that the oscillators may synchronize. Since this
result is so enlightening, I would like to present
a deviation of this cirteria first. Subsequently,
I will explain how this criteria can be applied
to the applauding audience.

3.1 The Kuramoto model

Great effort was put into the development of
a mathematical model to describe the phe-
nomenon of collective synchronization of an
enormous number of interacting oscillators.
Examples for synchronization processes can
be found everywhere in nature and subse-
quently cached the interest of scientists. A
beautiful introduction to this topic with more
interesting examples of synchronization pro-
cess and how the occur is given by [9]. In
1967, Winfree [10] suggested a model where
every oscillator is coupled to a mean frequency
that is generated by the hole population:

θ̇i = wi +

(

N
∑

j=1

X(θj)

)

Z(θi) (6)

for i = 1, . . . , N . θi ∈ [0, 2π[ is the phase of
the ith oscillator in the laboratory frame and
wi its natural frequency. Each oscillator is af-
fected by the population influence described
by X(θj). The answer of theith oscillator to

this influence is describes byZ(θi). Using
computer simulations, Winfree made an im-
portant observation: If the spread of the natu-
ral frequencieswiis large compared to the cou-
pling strength, the oscillators do not synchro-
nize. However, if the spread decreases there is
a critical point, once crossed a fraction of rota-
tors suddenly synchronize oscillating all with
the same frequency. This fraction increases if
the spread decreases further [10]. Based on
Winfree’s, model Kuramoto published a pa-
per in 1975 [5, 6] where he showed that for
any system of weakly coupled oscillators with
limit cycle, the long term dynamics of the sys-
tem can be described with only one function
depending on the phase difference of the con-
sidered oscillators:X(θj)Z(θi) = Γij(θj−θi).
Furthermore, by simplifyingΓij(θj − θi) =
K/N sin(θj − θi) with K ≥ 0, he was able
to solve the model analytically giving a math-
ematical condition when synchronization oc-
curs. In this simplification, the interaction
weight and the functional form is the same for
every interaction pair. The1/N factor ensures
that the thermodynamic limit (N → ∞) exists.
The is called the Kuramoto model:

θ̇i = wi +
K

N

N
∑

j=1

sin(θj − θi) (7)

and i = 1, . . . , N [5]. He further assumed
that the frequencies are distributed according
to a density functiong(ω). For simplicity
this function shall be unimodal and symmet-
ric about a mean frequencyΩ: g(Ω + ω) =
g(Ω−ω). A measure of how synchronized the
oscillators are is given by [5]:

reiψ =
1

N

N
∑

j=1

eiθj (8)

ψ can be thought of as the average phase of all
oscillators andr is a meassure of phase coher-
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Figure 1: Geometric interpretation of order pa-
rameter, equation8. The black dots correspond
to the phasesθj. The center is given by the
complex numberreiψ. If the system is com-
pletely disordered (like in case (a)) r is approx-
imately zero. If every oscillator is in the same
phaser ≈ 1 since all vectors are pointing in
the same direction (case (b)). From [11].

ence of the system. If every oscillator is ex-
actly in the same phaseθj = θ the right hand
side of equation8 simplifies toNeiθ andr = 1
with ψ = θ. On the other hand, if the sys-
tem is completely disordered, meaning that the
θj are distributed uniformly over the interval
θi ∈ [0, 2π[ the sum equals zero and therefore
r = 0. To make this idea more clear one can
imagine the state of every oscillator as a vector
pointing from the origin to the corresponding
phase on a unit circle (see figure:1). The mean
field character of Kuramotos model becomes
obvious if one rewrites equation7 in terms of
r andψ [6]. Multiplying both sides of equation
8 by e−iθi , subtracting its own complex conju-
gate and dividing both sides by2i yields:

r sin(ψ − θi) =
1

N

N
∑

j=1

sin(θj − θi) (9)

which is exactly equation7. Thus it follows:

θ̇i = wi +Kr sin(ψ − θi) (10)

Every oscillator is influenced only by the mean
field parametersr andψ. Suppose for a second
thatr equals zero, so there is no synchroniza-
tion. Equation10 tells us that every oscillator
oscillates with his own natural frequency. Ifr
increases the coupling to the mean phaseψ be-
comes stronger pulling the oscillator towards
the mean frequency. Instead of solving equa-
tion 10 in general, Kuramoto was now look-
ing for steady solutions where the system is
already in the synchronized state and any non
equilibrium behavior died off. So,r(t) is con-
stant andψ(t) rotates uniformly at a frequency
Ω. If we transform the system into the frame
which is rotating at this frequencyΩ: θi →
θi+Ωt (note that this impliesg(ω) = g(−ω)),
ψ is a arbitrary constant and therefore can be
set to zero2. In the new frame, equation10
reads3:

θ̇i = wi −Kr sin(θi) (11)

This equation determines the steady solutions
in the rotational frame. Oscillators with|wi| ≤
Kr will have the steady solutioṅθi = 0 and
so ωi = Kr sin(θi) [12]. They freeze at a
particular phaseθi = arcsin(ωi/Kr) in the
new frame. These oscillators are called locked
since they are locked the the frequencyΩ in
the original frame. Oscillators with|wi| ≥
Kr will not able to frequency lockθ̇i 6= 0.
To ensure thatr andψ will still be constant
even with this drifting oscillators Kuramoto as-
sumed that the drifting oscillators from a sta-
tionary distribution on the circle. So, in areas
of the unite circle where less oscillators are,

2This means settingψ(t) = 0 if t = 0.
3Naturally,ωi → ωi +Ω in the new frame.
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they have to move faster than in areas were the
density is high. Letρ(θ, ω)dθ be the fraction of
oscillators with frequencyω that lie betweenθ
andθ + dθ. Stationarity implies then:

ρ(θ, ω) =
C

|θ̇|
=

C

|w −Kr sin(θ)|
(12)

with C defined by
∫ 2π

0
ρdθ = 1.

Since we are looking for steady solutions in
the rotational frame only,ψ = 0 and equation
8 becomes

r =
1

N

N
∑

j=1

eiθj (13)

with θj obtaining equation12. The sum can
be split into the locked and drifting oscillators
r = rlocked+rdrift. The locked oscillators con-
tribute:

rlocked =
1

N

∑

locked

cos(θ(ωi)) + i
wi
Kr

(14)

=
1

N

∑

locked

cos(θ(ω)) (15)

=

∫

|w|≤Kr

cos(θ(ω))g(ω)dω (16)

in the limit of N → ∞ andw = Krsin(θ).
Recall, that the natural frequencies are as-
sumed to follow a symmetric unimodal distri-
butiong(ω) about zero in the rotational frame.
The contribution of the drifting oscillators is:

rdrift =

∫ 2π

0

∫

|w|≥Kr

eiθg(ω)ρ(θ, ω)dωdθ = 0(17)

since equation12 obtains: ρ(θ + π,−ω) =
ρ(θ, ω), equation12 and g(ω) = g(−ω).
Changing the integration variable in equation
16, finally yields to a self consistent equation
for r:

r = Kr

∫ π

0

cos2(θ(ω))g(Krsin(θ))dθ (18)

Note that|w| ≤ Kr impliesθ ∈ [0, π]. Obvi-
ouslyr = 0 is always a solution for any value
of K. A second solution can be obtained by
letting r → 0+ in equation18. This gives
us the critical value K when oscillators start to
synchronize collectively.

Kc =
2

πg(0)
(19)

Kuramoto showed in [5, 6] that in the spe-
cial case of a Lorentzian densityg(ω) =
γ/π
γ2+ω2 equation18 can be integrated analyti-
cally yielding:

r =

√

1−
K

Kc

(20)

for all K ≥ Kc. This is very important re-
sult. The system of oscillators can not syn-
chronize unless the coupling strength exceeds
a certain critical threshold. Once this thresh-
old is exceeded, the system performs a phase
transition. The population is divided into os-
cillators that freeze at a particular frequency
Ω and oscillators that drift acceleratingly and
decceleratingly around the unite circle giving
rise to partial order in the systemr 6= 1. The
fraction of drifting oscillators becomes smaller
if K increases further. In the limitK → ∞ all
oscillators are frequency locked and we have
perfect coherencer = 1 (see figure2). Of
course, the sinusoidal simplification that was
made is not true in general and might even not
be a good approximation in most cases. How-
ever, it supports us with the possibility to de-
rive a formula that gives us an understanding
how synchronization can arise. The Kuramoto
model is still discussed controversely and at
lots of questions are still unanswered. For ex-
ample it is still not proven that the steady so-
lution r 6= 0 is stable [12] nor is it proven
that Kuramotos approach, that was presented
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Figure 2: Bifurcation in the Kuramoto model
for unimodalg(ω). From [13].

here, is rigeriously valid in the thermodynamic
limit [ 12]. However, the Kuramoto model was
applied successfully to a wide range of prob-
lems and lots of highly interesting modifica-
tions like stochastical perturbation have been
developed [13, 14]. A beautiful and readable
introduction to the Kuramoto Model is given
by Strogatz [12].

3.2 Experimental findings and
conclusion

In 2000 Ńeda, Ravasz and Vicsek published
two papers [7, 8] where they showed that
an applauding audience can be analyzed as
a population of oscillators within the frame-
work of the Kuramoto model. Their conclu-
sion is based on two experiments [7, 8]. In
the first experiment they recorded the applause
after theater performances using microphones
that were hanging from the ceiling as well as
placed in the neighborhood of randomly se-
lected individuals. They define and calculate
an oder parameterqexp [7], similar to the one
in equation8 as well as the noise intensity of
the signal, averaged over 3 seconds. A typical
result is shown in figure7. 7a shows the global

short time average of the recorded signal af-
ter digital preprocessing. Figure7b shows the
local signal that was recorded next to an indi-
vidual. It can be observed that at aboutt = 12
seconds, the signal becomes periodic. The cal-
culated order parameter in7d increases. More-
over, the long time (3 seconds) noise intensity
signal, 7c, decreases when the clapping be-
comes more synchronized having its minimum
where the order parameter is maximal. Figure
7d shows the calculated clapping frequency of
an individual as a function of time. One can
see that the individual changes its clapping fre-
quency to approximately half the frequency
while the order parameter is rising. Their con-
clusion was that there are two different types of
clapping. A type I clapping when individuals
applaud independently and a type II clapping
that appears when the audience is synchro-
nized. In a second experiment, they recorded
the clapping of 73 high school students that
were asked to clap as they would right after a
good theater performance (type I) and as they
would during synchronized clapping (type II).
This experiment was repeated with one student
during one week for 100 times. The results of
this experiment were: (1) The frequency distri-
bution of type I clapping is larger than of type
II clapping4: DI/DII ≈ 2.5 (figure 7f). A
similar behavior can be observed from the 100
measurements on one individual (figure7g).
(2) The ratio of the peak-frequencies of type
I to type II is approximately2 : 1 (figure:6) as
it can be observed in figure7f,g. Néda, Ravasz
and Vicsek concluded, that people lower their
clapping frequency to a value that is half as
large as before in order to achieve synchro-
nization. This is exactly what one would have
expected considering the audience as a popula-

4A Gaussian was fitted through the data to obtain the
dispersions [7]
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tion of oscillators in the Kuramoto model with
θi being the clapping phase of the individual
andωi its natural clapping frequency. Solv-
ing equation19 in the case of a Gaussian fre-
quency distribution with dispersionD yields:

Kc =
√

2
π3D. Synchronization is only pos-

sible if the coupling exceeds the critical value
Kc. By changing from type I to type II clap-
ping the audience reduces the dispersion and
therefore lowers the critical coupling strength
until synchronization is possible. Of course,
this does not explain why people try to syn-
chronize their clapping. However, figure7d in-
dicates that the synchronization is lost at about
20 seconds. Ńeda, Ravasz and Vicsek ex-
plained this due to the fact that the average
noise decreases during synchronized clapping.
The audience might feel that this is not satis-
fying and therefore tries to increase the noise
level by clapping faster. The frequency dis-
tribution increases again and so does the crit-
ical coupling strength. The coupling among
the people may become smaller than the criti-
cal value and synchronization is lost. A quite
good example for an audience clapping ryth-
micly can be foundhere (listen carefully at
about second 8). However, the model is not re-
ally realistic since one would assume that spec-
tators are driven only by the desire to increase
the global noise level. In a more recent paper
[15] Néda et. al introduced a new model where
they treat the spectators as a two mode stochas-
tic oscillator which are only driven by exactly
this goal.

4 Conclusion

The two models that have been introduced
seem to have a lot of potential. Especially
the Kuramoto model seems to be very inter-

esting in the context of understanding syn-
chronization in in general. Using compara-
tively easy mathematical tools, a strong cri-
teria could be derived giving a deep intuitive
understanding of how synchronization occur.
Farkas et al. also presented a very interesting
model for crowd behavior that might not only
be used to describe Mexican waves but also
in general cases, when the dynamic of social
group is heavily influenced by a little fraction.
However, the powerful methods of statistical
physics will contribute to the understanding
of system with a large amount of interacting
members and will hopefully lead to a deeper
understanding of the complex patterns of so-
cial interactions.
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Figure 3: Spontaneous symmetry breaking in the Mexican wavesimulation. The increasing
brightness indicates the different states of motion of the spectator. White means standing with
hands up. From [2].

Figure 4: Transition between symmetric and antisymmetric solution. From [2].
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Figure 5: Probability distribution for propagating direction as a function ofδ. From [2].

Figure 6: Normalized distribution for the ratio of frequencies of type I and type II clapping.
From [7]
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