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Abstract

This essay introduces a basic model for a traffic jam phase transition. Order parameter will

be defined, motivated from physical reasoning. Phase diagram of the system shows there is a

critical behavior, from which we can deduce critical exponents similar to statistical mechanical

exponents.
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I. INTRODUCTION

Traffic jam is one example of a non-statistical mechanics phenomenon that exhibits

phase transition. One phase, called the free phase has all cars traveling at the maximum

allowed speed. The other phase, called the jam phase occurs when the average speed of

cars is less than the speed limit, that is, the flow of cars is slowed down.

In this essay, we will explore a basic model describing this phase transition. By com-

paring with statistical mechanics results, we will show that there is a critical behavior,

and then proceed to calculate various critical exponents. Finally we discuss various

improvements that can be made to the model.

II. BASIC MODEL

A basic model describing traffic jam was introduced by Nagel and Schreckenberg

[1]. This model is defined on a space-time lattice. Each lattice point Si may be empty

or be occupied by a car, and after each time step, the positions {xj} of all cars are

updated. The lattice used here is simply a one-dimensional lattice with a periodic

boundary condition (a ring), so it models a single-lane traffic. Each car has a velocity

vj (with maximum velocity vmax) which determines how far it will move after each time

step. For simplicity, the lattice spacing is assumed to be 1.

The time evolution follows these rules:

• vj(t + 1) = vj(t) + 1 when the car ahead is located farther than vj(t) + 1 and

vj(t) < vmax.

A car may accelerate as long as its speed is below speed limit and the car in front

is far enough.

• vj(t+ 1) = [xj+1(t)− xj(t)]− 1 if xj+1(t)− xj(t) ≤ vj(t).

Here, xj+1(t)− xj(t) is the distance to the next car. A car must decelerate if the

next car is close enough.
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• If vj(t+ 1) > 0, then vj(t+ 1)→ vj(t+ 1)− 1 with a fixed probability p.

This quantity p has an important role which will be discussed later.

• xj(t+ 1) = xj(t) + vj(t+ 1)

It should be noted that these rules ensure no crashing will occur, because the location

of any car at time t+ 1 is always behind the location of the next car at a previous time

t.

If we observe how the decision to accelerate/decelerate is done in this model, we’ll

see that it is slightly different from real traffic. In real traffic, drivers adjust their

speed according to the next car’s position and velocity. For example, a driver may start

to decelerate when the next car slows down. However, in this model, only the next

car’s position determines whether a car will accelerate or decelerate. Even with this

simplification, this model has a phase transition.

III. PHASE TRANSITION

The two physical quantities of interest here are density of cars ρ and flux q. The

density ρ is defined to be [2]

ρ = 〈ni(t)〉 , (1)

where ni is the occupation number of lattice point Si, and the angled bracket denotes

time averaging over a large time period. As pointed out by Souza and Vilar in [2], if the

averaging is done over a long enough time, the density measured will be associated with

the steady-state, and hence will be independent of Si.

The flux q is defined as

q = 〈mi(t)〉 , (2)

where mi(t) is the number of cars passing Si between time t and t+ 1. Here, the flux q

is also a steady-state value, independent of Si.
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Now let’s think about the physical distinction between a free (no jamming) phase

and a jammed phase. Suppose there are very few cars (small ρ) and for now assume

p = 0 (no random deceleration). Intuitively, we would expect to have no jamming in

the steady-state. This means every car is expected to move at the speed limit vmax, and

hence the flux is q = ρvmax.

As the traffic gets more cars (i.e. ρ increases), we expect that the steady-state velocity

eventually becomes less than vmax. Thus, the flux q = ρv will be less than ρvmax. The

relation q < ρvmax (or equivalently, 1− q/ρvmax > 0) characterizes the jamming phase.

Motivated by this observation [2], we define the order parameter to be

M = 1− q

ρvmax
, (3)

so that M = 0 if ρ ≤ ρc, and M 6= 0 otherwise.

If we compare this to a statistical mechanics system (say, nearest-neighbor Ising), the

role of temperature is analogous to 1/ρ. At high “temperature” (ρ < ρc), the system is

in a disordered state (M = 0, free phase). Below a “critical temperature”, i.e. ρ > ρc,

the system obtains a non-zero “magnetization” M (jammed phase).

Fig. 1 shows the results of numerical simulations by Souza and Vilar [2].

IV. PHASE DIAGRAM

In Fig. 1, we can see that if we start from the free phase at p = 0, increasing p causes

M to have a non-zero value. This is analogous to spin system, where increasing external

magnetic field H from zero on a disordered phase produces a non-zero magnetization

(polarizes the system). Noticing this similarity, Souza and Vilar suggested that p is the

variable conjugate to M [2], in the same way that external magnetic field is conjugate

to magnetization.

With this knowledge, we can immediately obtain the phase diagram in the p−ρ plane

(keeping vmax fixed), shown in Fig.2(a). Here, the symbol “2” indicates a continuous
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FIG. 1: Plots of order parameter M versus density ρ for various vmax and p. Reproduced from

[2].

phase transition along the line p = 0 from free phase to jammed phase.

If we take p = 0, there is a known analytic solution [2]:

M =

0, if ρ ≤ ρc

1
vmax

ρ−ρc

ρρc
, if ρ > ρc

(4)

and ρc = 1/(1 + vmax). The resulting phase diagram in ρ − 1/vmax plane is shown in

Fig.2(b).
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FIG. 2: Phase diagrams for (a) p and ρ plane (vmax fixed), (b) ρ and 1/vmax plane (p = 0).

Part (b) has been reproduced from [2].

V. CRITICAL EXPONENTS

In the previous section, we had assumed that p is conjugate to M . Now, a suscepti-

bility can be naturally defined as

χ =
∂M

∂p

∣∣∣∣
p=0

. (5)

From Fig.2(a), we see that there is a critical point at p = 0 and ρ = ρc. Thus, we

may define critical exponents β, γ, and δ as follows [2] (there is no α in this case since

there is no clear analog of heat capacity):

• At p = 0, for ρ > ρc, but small (ρ−ρc)/ρc, we haveM ∼ (ρ−ρc)β and χ ∼ (ρ−ρc)−γ

• At ρ = ρc (critical “isotherm”), we have M ∼ p1/δ

Souza and Vilar calculated these exponents numerically [2] for several values of vmax

with the results shown in Table I. All of these results are consistent with the well-known

algebraic relation βδ = β + γ.

What about the correlation length? Roters, et. al. [4] analyzed the correlation length

of the velocity (that is, a measure of how correlated the velocity of a group of cars close
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TABLE I: Critical exponents by Souza and Vilar [2]

vmax β δ γ

1 1 2 1

2 1 1.73 0.73

3 1 1.61 0.60

4 1 1.54 0.54

5 1 1.48 0.47

∞ 1 1 0

to each other) using the so-called dynamical structure factor

S(k, ω) =
1

NT

〈∣∣∣∣∑
n,t

vn(t)ei(kn−ωt)
∣∣∣∣2
〉
. (6)

This is essentially the Fourier transform of the two-point function, and hence the corre-

lation length can be read off from the asymptotic behavior of S(k, ω).

Using this technique, they were able to show [4] that near ρ = ρc,

ξ ∼ (ρ− ρc)−ν , (7)

with ν = 0.92± 0.05.

VI. FURTHER IMPROVEMENTS

There are several ways to improve this very basic model. One way is to include the

possibility of having more than one lane, taking into account the fact that cars may

switch lanes [6].

A continuum theory (assuming large clusters of jammed phase) has also been analyzed

in the literature [5]. This theory uses partial differential equations instead of a finite

time step evolution. Finally, [3] explores the mean field approximation of the model

discussed in this essay.
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VII. CONCLUSION

We were able to show using a simple discrete space-time model, that traffic flow

exhibits a phase transition from a free phase to a jammed phase. By making analogies

to spin system, we managed to construct a phase diagram and also showed that there

is a critical point. The computation of the critical exponents further demonstrated the

universality of the critical behavior. This is a surprising result because the system is not

a statistical mechanics system, and it shows that the knowledge of critical phenomenon

is very useful in many other research areas.
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