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Abstract

Percolation processes are well studied in physics. In theoretical
physics, directed percolation (DP) is a representative of a well-known
universality class of continuous phase transitions [1]. DP has been
used to model a variety of phenomena including turbulence, liquids
percolating through porous media, epidemics and forest fires [2]. In
the Erdös-Rényi model, it is known that the order parameter (size of
largest connected component) undergoes a continuous phase transi-
tion beyond a critical percolation treshold. However, recent numeri-
cal experiments indicate that an Erdös-Rényi model with a modified
percolation rule can have an “explosive” phase transition in which
the order parameter undergoes a discontinuous jump [3, 4, 5]. An-
other model of a random network of integrate-and-fire neurons shows
a similar transition [8].
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1 Introduction

In this paper we will describe a number of statistical mechanical models.
Unifying feature of all of these models is that they are percolation-like. That
is, the underlying graph structure has edges that are either open or closed
with some probability. Consider the following figure (adapted from [1]). The
diagram illustrates directed bond percolation on a diagonal lattice of nodes.
Each two adjacent nodes in the lattice are connected by bond that is open
with probability p and closed with probability 1− p.

Imagine that a fluid is allowed to flow through the lattice. It is driven by
gravity, hence it can only flow down-left or down-right (indicated by direction
of arrows), and only through open bonds (indicated by solid lines). Then, a
size of a percolating cluster is the number of nodes that are reached by the
fluid starting from the nucleation point.

Evidently, if the probability p that any bond is open is large, then the
percolating cluster will be large (on the order of the size of the system, that
is number of nodes). If p is small, we expect that the percolating cluster
will be small, and will not scale with the size of the system. Hence, there is
some threshold pc above which the fluid will percolate to any depth from the
nucleation point. This is nicely illustrated by the following diagram (adapted
from [1]).
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This transition (along p) is continuous and is characterized by a number
of universal critical exponents. Contact processes, forest fire and epidemic
models have all been found to belong to the directed percolation universality
class. However, the directed percolation exponents have only recently been
experimentally measured (i.e. non-numerically) in an interesting experiment
on turbulent liquid crystals [6, 7].

2 Introduction to the Erdös-Rényi model

Whereas directed percolation is a spatially extended process, in this section
we will consider the Erdös-Rényi model, which is an infinite-dimensional per-
colation process, i.e. a mean field model. However, the explosive transitions
that are the topic of this paper are not specific to mean field models. We will
see later that they also occur in percolation models on spatially extended
lattices.

In the Erdös-Rényi model, one starts with n vertices that are initially all
isolated. Then, one begins to add edges to the vertices by picking any two
random nodes and connecting them. Now, two nodes are said to be in the
same component if there is a path of edges that connects them. We will call
the number of nodes in the largest such component C.

Evidently, as more edges are added, C will grow, until at some point all
nodes are a part of one giant component and C = n. But in what way does
C scale with the number of edges e? We will define r via e = rn. This defines
r as the average degree of the nodes in the graph (i.e. the average number
of neighbours each node has in the graph.) For specific n and e the number
of possible graphs is extremely large, and the problem of characterizing such
graphs is mathematically intractable. One of the brilliant insights of Erdös
and Rényi was to realize that the random graphs in the limit n→∞ are well-
defined [8]. For such graphs, it is possible to calculate a variety of measures,
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among others including the scaling of C. Erdös and Rényi found that in the
standard random graph model, when r < 0.5, C ∼ log n. But when r > 0.5,
C ∼ (4r − 2)n. That is, above the critical value rc = 0.5, the size of the
largest connected component scales linearly with n.

3 Achlioptas process

The idea behind the Achlioptas process [4] is to modify the rule for gener-
ating Erdös-Rényi random graphs. Instead of adding random edges, in the
Aclioptas process one picks two edges at random, and then uses a rule to se-
lect one or the other. The selected edge is then added to the graph whereas
the other edge is returned to the pool of missing edges. The process then
continues.

One of the selection rules Achlioptas et al. [4] considered was the product
rule (PR). In PR, one chooses the edge that minimizes the product of the
sizes of components on each side of the edge. As an example, consider the
following diagram (adapted from [4]). In A, the standard Erdös-Rényi model
is illustrated, where a single random edge is picked and added to the graph.
In B, two edges, e1 and e2 are picked at random. Then e1 is chosen because
its product (2× 7 = 14) is smaller than that of e2 (4× 4 = 16).

The interesting feature of adding such a nonrandom selection rule to the
Erdös-Rényi model is that the percolation threshold can be reduced or in-
creased (i.e. percolation can be either accelerated or suppresed). In the case
of PR, the percolation threshold is increased. Consider the following dia-
gram (adapted from [4]) that illustrates the numerical results for the Erdös-
Rényi model (ER), bounded size rule (BF) and the product rule (PR). BF
is another Achlioptas rule that can increase the percolation threshold.
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These numerical results were computed for n = 512, 000. Whereas the per-
colation threshold is increased for both BF and PR, compared to ER, the
interesting result here is that it seems like the transition for PR has a dis-
continuous jump.

The figure above is only enough to motivate the idea that the PR percola-
tion transition is discontinuous. Achlioptas et al. use an interesting method
to verify that the transition indeed is discontinuous. They numerically mea-
sure the time step t0 at which C first becomes larger than n1/2 and t1 at
which C first becomes larger than 0.5n. A time step corresponds to a value
of r via t = rn (since the number of edges at time step t is t). For the
ER process, and other continuous percolation transitions, it is found that
∆ ≡ t1 − t is extensive, i.e. it scales with n. On the other hand, for the PR
model they find that ∆ ∼ n2/3. Since ∆ is sublinear in n, this is numerical
evidence that in the thermodynamic limit n→∞, the percolation transition
indeed is discontinuous.

Discontinuous transitions aren’t unique to mean-field systems. Ziff has
investigated the PR model on a 2D lattice and he finds that it also exhibits a
discontinuous transition. The figure below (adapted from [3]) illustrates the
numerical results on lattices of linear dimension 256 through 8192.
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4 Explosive transitions in a neural network

model

A more interesting model for a random network of discrete integrate-and-
fire neurons has been investigated by DeVille et al. [8]. Same sort of an
explosive transition can occur in this model, but this model has a more
physical motivation. In this section we will briefly describe the model given
in [8] and explosive transitions that occur in that model.

In this model there are n discrete integrate-and-fire neurons that are all
attached to each other with excitory synapses. These neurons can be in K
different discrete levels of excitations, 0, . . . , K − 1. If a neuron is promoted
beyond level K − 1, it itself fires and promotes all other neurons in the
network with probability p. A neuron firing can promote a cascade of other
neurons firing (a burst). Once the burst is complete, all the neurons that
fired are reset to level 0. Each time step a single neuron is promoted, and
this may lead to a cascade of other neurons firing.

In this model the size of the largest component C is replaced by the size
of a burst of neurons. When p is large, extensive and synchronized bursts of
neurons occur. The figure below (adapted from [8]) shows (a) the time series
for C, and (b) the autocorrelation of the time series for C, indicating the
synchronization. This figure is for a numerical simulation on 1000 neurons.
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On the other hand, when p is small, the time series is qualitatively differ-
ent. The figure below shows the dynamics for small p. In (c) we see that
the sizes of bursts are small and (d) their autocorrelation doesn’t show any
synchronization.

Another interesting feature of this model is that there exists a param-
eter range of p in which these two states (synchrony and asynchrony) are
metastable and the system can make transitions between the two states. The
numerical results indicate that the times spent in each of the states are dis-
tributed exponentially indicating a memory-less transition process between
the two states.

Evidently, when K = 1 this model is equivalent to the Erdös-Rényi ran-
dom graph construction process. Interestingly, the order of the transition
between the microscopic and macroscopic bursts seemingly depends on K.
DeVille et al. find numerical evidence that when K ≥ 5 the transition in
fact becomes discontinuous. The following figure (adapted from [8]) shows
the numerical results for the fraction of neurons participating in a burst as
function of the synapse probability (β ∼ p) for K = 6.
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5 Conclusion

The numerical evidence is strong that the percolation processes can have a
discontinuous transition in some models. However, a mathematical proof is
still missing even for the simplest model (PR). This is because the combina-
torics of the PR process is a great deal more complicated than that of the
Erdös-Rényi model.

However, it is unclear if the language of phase transitions in physics can be
used to characterize these “explosive” transitions. I believe the key difficulties
in calling these transitions first-order are: (1) the “order parameter” (size of
largest cluster, or burst) is non-local, and (2) it is difficult to construct a free
energy as function of such order parameter.
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