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Abstract

The Fredrickson-Andersen model, one of a class of Ising models
that introduces constraints on the allowed dynamics of the system,
was proposed in an attempt to capture some of the dynamic properties
of glass formers while exhibiting trivial equilibrium behavior. After
a brief introduction to some of the observed phenomena of glassy
systems, the FA model and its scaling behavior is reviewed. In closing,
two extensions and a few potential limitations of the FA model are
discussed.
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1 Introduction

Experimentally, the prescription for making a glass is both straight-forward
and well known: one rapidly cools a liquid below the melting temperature so
that crystallization is avoided, and then continues to lower the temperature
of the supercooled liquid. The viscosity of the liquid increases dramati-
cally as the temperature is lowered, until at some transition temperature the
longest relaxation processes exceed measurable experimental timescales. At
this point (conventionally taken to be 1012 Pa s) a ‘glass transition temper-
ature,’ Tg, is operationally defined and the system behaves as a solid, albeit
an amorphous one that lacks long-range order. However, Tg is not a uniquely
defined temperature, but rather it depends on the rate, r, at which the liquid
is cooled: the longest accessible timescales are set by 1/r, so as the cooling
rate is reduced the transition temperature is seen to decrease [1].

Figure 1: Log viscosity vs. inverse temperature for three liquids of varying
strength/fragility (solid lines), as well as NMR data for the rotational relax-
ation time for the o-terphenyl sample (open circles). Figure reprinted from
[2].

In addition to a transition temperature that is operationally – and not
uniquely – defined, there are many other unusual properties of the glass tran-
sition which have led to considerable debate as to whether it is a true phase
transition with a definable thermodynamic order parameter, or if it represents
simply the properties of the fluid changing dramatically as the liquid falls out
of equilibrium upon cooling [3]. A critical slowing-down of the system is cer-
tainly observed, as can be seen in Figure 1. There we can see an exponential
growth in the viscosity as a function of 1/T for some systems (those systems
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with this dependence, such as SiO2, are called ‘strong’ or ‘Arrhenius’ glasses),
and other systems that display a greater-than-exponential growth in viscos-
ity, covering almost 15 orders of magnitude in a very narrow temperature
window (these systems are referred to as ‘fragile’ glasses). Unfortunately,
the data at the longest timescales (i.e. at temperatures closest to Tg) are not
good enough to discriminate between relaxation times that exhibit a true
divergence at a finite temperature (e.g. something like τ ∼ ea/(T−T0)) or a
divergenceless but rapidly increasing function (e.g. τ ∼ eb/T

2
) [1].

Figure 2: Neutron scattering measurement of the radial distribution function,
g(r), of (left) a liquid selenium system for different temperatures all above
selenium’s 217◦ C melting temperature and (right) amorphous selenium-
tellurium mixtures of varying compositions, all of which exhibit glassy be-
havior at room temperature. Figure reprinted from [4]

In general when looking at critical phenomena we are used to associating
a critical slowing down with a diverging length scale, but for glassy systems
there does not seem to be a readily identifiable growing static length scale.
Indeed, not only do they lack a diverging static length scale, but the entire
static structure of the system shows only slight qualitative changes over the
entire temperature range associated with the dramatic slowing down of the
dynamics [2]. For instance, Figure 2 shows the radial distribution function
(which gives the local density of the fluid a distance r away from a tagged par-
ticle located at the origin) of both liquid selenium over a broad temperature
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range and a glassy selenium-tellurium mixture over a range of compositions
where the viscosity increases dramatically, but there are no clear structural
changes evident – only subtle changes in the glassy g(r). Very recently there
have been some hints that more subtle measures of the static structure might
point to an associated diverging static length scale: one proposed order pa-
rameter, ψ6, measures the tendency of the particles to hexagonally order into
medium-range crystalline structures [5].

However, the current consensus is still built around models where the
transition to the glassy regime is not a true thermodynamic transition with
a changing structural order parameter, but is rather a purely dynamic tran-
sition. Associated with the slowing down of the dynamics, then, is a growing
dynamic length scale. In order to identify this dynamic length scale, note
that another key feature of the glassy state is the observation of a spatially
heterogeneous distribution of fast- and slow-moving particles within the sam-
ple (as in [6], where a glassy colloidal suspension was observed using confocal
microscopy). The dynamic length scale is often defined as either the typical
size of these regions of dynamic heterogeneity or (possibly but uncertainly
related) the size of a region of particles which must move cooperatively for a
relaxation event to occur.

2 Kinetically constrained models: the FA fa-

cilitated Ising model

With this situation in mind – dramatically changing system dynamics with
little if any changes to the static structure of the system as temperature is
decreased – a class of models called kinetically constrained models (KCMs)
has been developed to try to investigate the glassy phase. Their guiding
philosophy is to take a model with trivial equilibrium behavior but then im-
pose rules, i.e. kinetic constraints, on how the system is allowed to transition
between different configurations [1].

One of the originally proposed KCMs is the FA model, developed by
Fredrickson and Andersen [7]. In its simplest version, the Hamiltonian is
given by

H =
N∑
i=1

Si, (1)

that is, an Ising model Hamiltonian with no interaction term (Fredrickson
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and Andersen also studied this model for nonzero ferromagnetic J and found
the qualitative predictions much the same [8]). We know that for an Ising
system with no interactions and a non-zero external field there are no phase
transitions above T = 0, so indeed this model starts out with as trivial
an equilibrium behavior as could be imagined. To create more interesting
dynamics, then, the FA model looks at the master equation for the evolution
of the probability that the system is in the state ~S,

∂

∂t
p(~S, t) =

∑
~S′

w(~S ′ → ~S)p(~S ′, t)−
∑
~S′

w(~S → ~S ′)p(~S, t). (2)

In the absence of kinetic constraints the rates would just be related to the
change in energy in flipping the necessary number of spins to go from config-
uration ~S to configuration ~S ′, but in the FA model an extra rule is applied:
the rate for spin i to flip is set to zero, w(Si → −Si) = 0, unless some number
f of its nearest neighbors are in the spin-up state then [1]. The ‘facilitation
number,’ f, is an integer parameter of the theory, and the dynamics turn out
to depend strongly on whether f = 1 or f 6= 1.

Physically, the interpretation of the FA model is that each spin vari-
able represents a coarse-grained region of space, with regions of higher-than-
average density identified with down-spins and regions of lower-than-average
density identified with up-spins. The idea is based on the plausible hypothe-
sis that that the dynamics are controlled by the local density fluctuations, so
that particles in a denser-than-average region of the fluid will have a harder
time responding to local fluctuations. Thus regions of excess density will
propagate very slowly unless their dynamics are facilitated by a sufficient
number of nearby regions of relatively low density.

Some basic results from the FA model are most easily written in terms
of the natural ‘temperature’ variable c, defined to be the equilibrium con-
centration of up spins. Since the Hamiltonian is so simple, this is just
c = (e2β + 1)−1. Now, if we are considering the dynamics of the f = 1
model (so that a down-spin needs only one nearby up-spin to flip) the only
interesting dynamics occur near T = 0, so c ≈ e−2β. A characteristic relax-
ation time, τ , can be found by first defining the single-spin self-correlation
function in time,

φ(t) =
〈Si(t)Si(0)〉 − 〈Si〉2

1− 〈Si〉2
, (3)

and then taking the zero component of its Fourier transform, φ̂(0). The
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model predicts that at low temperatures τ ∼ c−∆ [8]. That is, the relaxation
times of the f = 1 model correspond to a straight line as plotted in Figure
1, and thus potentially capture the features of strong glasses.

On the other hand, for f = 2 on a hypercubic lattice the time correlation
functions predict a transition at nonzero temperature in the following sense.
There is a critical temperature (concentration) above which φ(t) decays to
zero at long times (as we would expect in a fluid), but below which it remains
finite even as t → ∞. Numerical work on a simple cubic lattice in three
dimensions then shows that near this critical concentration the relaxation
time is given by τ ≈ (c − cc)−1.765 [8]. Since the critical concentration cc ≈
0.0904 is still small we can see without detailed calculation that such a power
law for the relaxation time in c would look like one of the upwardly-curving
lines when plotted as in Figure 1, so the f = 2 model has some characteristics
of a fragile glass former.

In retrospect, this difference between f = 1 and f > 1 can be rational-
ized with a simple physical argument (see [1], [7], [8]). We can think of the
low-density, spin-up sites as defects propagating through the system, and
the relaxation time as related to the time for a defect to move over some
characteristic length scale (where, for fixed temperature and hence equilib-
rium concentration c, the natural length scale is the typical distance between
defects: l ∼ c−1/d in d-dimensions). If f = 1 then a single, isolated defect
can propagate itself with a diffusion constant proportional to a power of the
concentration, so then

τ ∼ l2

D
∼ c−α−2/d ∼ exp

(
α + 2/d

KT

)
, (4)

which shows a non-diverging, Arrhenius-like behavior. On the other hand,
if f > 1 an individual defect cannot cause its own propagation over an
arbitrary distance, nor in fact can any finite collection of clustered up spins.
This can be seen by considering a cubic shell of down spins around a cluster
of defects [8]: the defects in the interior can never flip a down-spin in this
shell on their own, since on a hypercubic lattice each down-spin in the shell is
nearest neighbors with only one of the interior defects. Thus, for a defect to
propagate it must rely on cooperative processes involving defects propagating
in from outside of such a shell. Since with decreasing temperature not only
is the average distance between each defect growing but so is the number
of defects that must be cooperatively flipping for a defect to propagate, the
relaxation time cannot scale as a simple power law in c [1]. What results,
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then, is a power law in the concentration that diverges at some finite c 6= 0,
along with a diverging dynamical length scale corresponding to the size of a
region that needs to act cooperatively for a defect to propagate.

For f > 1 there is still a relatively poor quantitative understanding of
how the dynamic time- and length-scales depend on c [1]. However, for
studying the ’strong glass’ case of f = 1 various renormalization group (RG)
techniques can be used to deduce the critical power-law exponents. In one
dimension the easiest approach is a real-space RG scheme [9] much like we
looked at in class for the Ising model: one first writes the Hamiltonian as a
sum of Liouvillians which encode the rates of all of the allowed neighbor spin-
flipping dynamics, coarse-grains the spins into blocks of size 2, computes the
renormalized rates in the Liouvillians, and then compares with the original
rates to work out how the concentration c has been renormalized by the
coarse-graining procedure. What results is a relaxation time that near the c =
0 (low temperature) fixed point scales as τ ∼ c−3 and a dynamic correlation
length that scales as ξ ∼ c−1.

For 2 ≤ d ≤ 4 (4 being the upper critical dimension for this model) a field
theoretic RG scheme provides an easier approach [10]. After coarse-graining
the fluid into regions of static-correlation-length size, assigning each region a
time coarse-grained value of the mobility ni (ni = 0 corresponding to a down
spin and ni = 1 corresponding to an up-spin), and choosing kinetic con-
straints for the master equation to be the sum of nearest-neighbor mobilities
one arrives at a field-theoretic description of the problem in the same uni-
versality class as the FA model. Renormalizing the action by considering the
effects of fluctuations in an epsilon-expansion then leads to low-temperature
scaling laws of τ ∼ c−2.083 and ξ ∼ c−0.5625 in three dimensions. The scaling
of τ matches very well with numerical simulations of this system, which give
a scaling exponent τ ∼ c−∆ with ∆ = 2.095 ± 0.01 [10]. Unfortunately, in
those same simulations the authors were not able to determine the scaling
of ξ accurately enough to test the validity of the derived scaling exponent.
Their best estimate yields a scaling exponent of 0.499, but with large enough
error bars to make it difficult to establish 0.5625 as either correct or incor-
rect (although the mean-field value of 1/3 is certainly ruled out by their
simulations) [10].
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3 Extensions of the FA model

The FA model, many of its resulting properties and additional scaling behav-
iors having been skipped over for the sake of brevity, is an interesting and
somewhat successful model that captures some of the fundamental dynamical
properties of glassy systems without relying on any interesting equilibrium
behavior. However, there are some natural extensions of the FA model that
have been explored over the years that substantially broaden its appeal and
viability. Here we restrict ourselves to briefly mentioning two such extensions.

We have already mentioned that the f > 1 versions of the FA model, while
capturing some dynamic features of fragile glass formers, are very difficult to
study analytically. The East model seeks to address fragile glassy behavior
more simply than the f > 1 FA models by introducing directionality to the
kinetic constraints. In one dimension it imposes a rule saying that a spin flip
is allowed only if the nearest neighbor spin on the left is an up-spin (thus
propagation can only occur to the East, and hence the name; in two dimen-
sions the ‘Northeast’ model is defined analogously). This restriction on the
allowed configurations of spins that can facilitate spin flipping has profound
effects on the dynamics even in the analytically tractable case of f = 1. In
one dimension the real-space RG technique in [9] is directly applicable. The
result is a characteristic length scale that, at low temperatures, scales as
ξ ∼ exp

(
e1/T/ ln 2

)
and a relaxation time that goes as τ ∼ exp (1/(T 2 ln 2)).

This double-exponential and super-Arrhenius behavior clearly shows dramat-
ically slower and more cooperative dynamics than the f = 1 FA model, and
it is plain to see that the relaxation time would be an upwardly-sloping line
when plotted as in Figure 1. Thus, this is a model that mimics some dynamic
features of fragile glasses.

Another extension of the FA model seeks to address a different point. For
the f = 1 model the critical fixed point is at T = 0, but experimentally and
in simulations the glass transition point Tg occurs at a finite, non-zero value
regardless of whether the glass is strong or fragile. One model that seeks to
address this starts by softening the hard kinetic constraints of the FA model:
instead of a spin flip being disallowed if it is surrounded by down-spins, the
rate is given by ε ∝ e−U/T , where U is some activation energy assumed to
be larger than the energy associated with creating an excitation [11] (so, the
constraint is only modestly softened in the model studied here). Using a
technique that involves introducing an extensive variable, K, that measures
the total dynamical motion of a trajectory and a field, s, that couples to K
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and biases it towards slow particle motion, the authors were able to show
that in the presence of softened constraints the model exhibits a line of first
order transitions ending in a critical point (see Figure 3). This critical point,
occurring at T 6= 0, has the same scaling behavior as a liquid-vapor critical
point [11]. Thus the model displays both a dynamical glass transition at low
but finite (depending on the value of s) temperatures and has the potential
to recover simple fluid behavior at high temperatures.

Figure 3: Phase diagram for the constraint-softened FA model, showing a
line of first-order transitions in the T-s plane separating the active, liquid-
like regime from the inactive, glassy-like dynamical regime. Figure reprinted
from [11].

4 Conclusion

In the above we have seen how the FA model and some of its extensions
take a model with trivial equilibrium properties and impose certain kinetic
constraints on the evolution of the system – how it is allowed to transition
between configurations – in an attempt to capture some of the basic dynam-
ical properties observed in the glass transition. These models have had some
success, being able to capture a range of both strong and fragile glassy behav-
ior in the relaxation time and identify a growing dynamic length scale that
this slowing down of the dynamics is associated with. Let us close, then, by
also mentioning some of the weaknesses and indeterminacies of these mod-
els. They all start by coarse-graining the fluid into regions of high and low
density, postulating that the surrounding density of a cell is the fundamen-
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tal factor controlling the motion of particles within the coarse-grained cells.
This assumption seems very reasonable and quite intuitive, but is it correct?

There is some evidence from simulations on two-dimensional disks that,
while there is some coincidence between the relative free volume of a tagged
particle (a particle with more relative free volume corresponding to being in
a comparatively low-density region) and its ensemble-averaged mean-squared
displacement, there is no strong correlation [12]. Perhaps this can be partly
explained by a collection of experiments (and one theoretical analysis) which
showed that for different systems the free-energetic barriers to particle mo-
tions in the glassy regime were scaling laws in (ρx/T ), where both the scaling
function and the exponent x are non-universal for different glass formers or
different assumed forms of the inter-particle potential of the fluid [3], [13].
Capturing this in the FA models would then presumably involve a coarse-
graining prescription into density cells that is highly system-specific. This
additional free parameter would make rigorous experimental tests of the ef-
fective model difficult, leaving open the question of whether the FA model
truly captures the fundamental physics of the dynamic phase transition under
study.

Speaking of the coarse-graining procedure to go from the fluid to the
KCM, so far we have been deliberately non-specific on how to actually per-
form that mapping. There seems to have been relatively little work in the
direction of directly linking these models to, say, microscopic simulations
of glass-forming fluids. One attempt avoids the above question of whether
the density is really the controlling variable by mapping not the local density
but a mean-squared measure of local particle displacement in a molecular dy-
namics simulation to the corresponding spin variables in a KCM [14]. This
somewhat begs the question of what physically controls the slowing of the
dynamics (it is a choice that says particle mobility is facilitated by particle
mobility - what causes the variation in mobility is set aside), but it never-
theless produces a result less intuitive than one would expect. In their MD
simulation the authors study a fragile glass former, and yet they find that it
most clearly maps after coarse-graining onto a KCM that is essentially the
f = 1 FA model, a model that we showed above was best thought of as serv-
ing as a model for strong glasses. Clearly, then, there is still much work to
do in making concrete connections between the KCMs and the microscopic
particle motions they hope to describe.
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