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Abstract

Despite the simplicity in their structure, lipid bilayers can ar-
range in a rich variety of phases, including rippled phases that exhibit
supramolecular periodic structures. A number of theoretical models
have been produced to characterize these phases over the last three
decades, some of which show consistency with x-ray diffraction data.
Here I describe a phenomenological Landau free energy theory of lipid
bilayers, whose phases show reasonable agreement with experiments,
and which predicts the existence of some novel phases, unobserved so
far (to the best of my knowledge).
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1 Introduction

Lipid bilayers (LB) constitute the basic structure of biological membranes,
and are ubiquitous in living organisms. Lipids consist of a hydrophilic polar
head group joined to a hydrophobic hydrocarbon chain (see fig. 1). When
embedded in water at sufficiently high concentration, lipids assemble in lamel-
lar structures that break translational symmetry and posses various degrees
of internal ordering, which, in turn, may affect the shape of the membrane
itself.

Since decades ago, experiments have identified a number of phases in the
arrangement of lipid bilayers [1], with the most salient ones being the so-called
Lα, Lβ′ , and Pβ′ phases. The first one is a smectic A phase, found at high
temperatures, in which the lipids form lamellar structures with an orientation
perpendicular to the membrane surface (see fig. 1(C)). The second phase is
found at low temperatures, and is a smectic C phase, in which the molecules
are tilted with respect to the normal of the membrane surface. At moderate
temperatures, the rippled phase Pβ′ is found. This phase is characterized
by corrugations of the membrane surface with well defined periodicity. An
experimental phase diagram is given in fig. 2.

Many theories have been developed over the last decades to understand
this problem [2, 3, 4, 5]. An interesting possibility is that, in fact, the phase
diagram may be much richer that initially found. Theory predicts that this
richness arises from the 2 dimensional nature of the orientation order param-
eter, and its coupling to the membrane curvature. The first factor gives rise
to different modulations phases (that is, modulations in the orientation of
the molecules); and the second gives rise to symmetric or asymmetric ripples
in the membrane. This last aspect has been experimentally inferred from 2D
x-ray diffraction and freeze-fracture crystallography [4].

In what follows I will describe the theory that best reproduces the ex-
perimental phase diagram of fig. 2. This theory is built upon previous ones
and gives account of the variety of rippled phases mentioned above. At the
core of this theory lays the notion that the curvature of the membrane is a
spontaneous self-adjustment that results when the moleculecular orientations
present divergence. This theory is a phenomenological Landau theory with
a two dimensional order parameter.
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2 Landau theory

Let us begin by defining the order parameter ~m as

~m = ~n−
(
~N.~n
)
~N (1)

where ~N is the unitary vector normal to the membrane surface and ~n is the
unitary vector pointing in the direction in which the molecule is oriented (see
fig. 3). Notice that ~m is a two dimensional OP.

Now, the free energy is built respecting the symmetries of the problem

fT = fm + fc (2)

The first contribution to the free energy in eq. (2) represents the energy
from the tilt elasticity, and involves only quadratic and quartic terms due to
rotational symmetry around an azimuthal angle φ (i.e. an angles that rotates
the OP within the plane of the membrane surface):

fm =
c1
2

(
~∇.~m

)2
+
c2
2

(
~∇× ~m

)2
+
D

2

(
∇2 ~m

)2
+
t

2
m2 + um4 (3)

where the terms D and u are always positive and preserve stability against c1,
c2 or t, which can be both positive, negative, or zero. Notice that, because
the OP is a vector, no cubic term is allowed. This term is a Lifshitz free
energy [6], that produces modulated phases if c1 or c2 is negative.

The second contribution to the free energy in (2) represents the energy
associated with generating a curvature in the membrane, and has the form:

fc =
κ

2

(
∇2h

)2 − γ (∇2h
) (

~∇.~m
)

(4)

The parameter h = h(x1, x2) is the height of the membrane relative to an
arbitrary point (see fig. 4(B)). Notice that there is a coupling between molec-
ular tilt represented by the OP and the membrane curvature, represented by
h. This coupling is meant to represent the steric interactions between neigh-
boring molecules, and is illustrated in the caricature of fig. 4.

The equilibrium curvature is be given by solving the Lagrange equation,
taking into account that there is no dependence of h in fm,

∂fc
∂h
−∇2 ∂fc

∂ (∇2h)
= 0→ ∇2h =

γ

κ

(
~∇.~m

)
(5)
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which leads to the equilibrium value of the curvature free energy

fc = −γ
2

2κ

(
~∇.~m

)2
(6)

Putting this value back in the expression for the total free energy, it simplifies
to

fT =
1

2

(
c1 −

γ2

2κ

)(
~∇.~m

)2
+
c2
2

(
~∇× ~m

)2
+
D

2

(
∇2 ~m

)2
+
t

2
m2 + um4 (7)

and so, the free energy at equilibrium curvature has the same form as the
tilt elasticity free energy with new parameter c′1 equal to

c′1 = c1 −
γ2

2κ
(8)

It is convenient to shift the problem to Fourier space. By using ~∇ → −i~k,
and employing the same notation for the variables, which are now functions
of the wavevector ~k, the free energy becomes

fT =
c′1
2

(
~k.~m

)2
+
c2
2

(
~k × ~m

)2
+
D

2

(
k2m

)2
+
t

2
m2 + um4 (9)

Now, to develop a basic understanding of the phase diagram, let us restrict
the study of this problem to the simplest case where ~m and ~k are parallel.
Then (~k.~m) = km and (~k × ~m) = 0, and we are left with

fT =
c′1
2
k2m2 +

D

2
k4m2 +

t

2
m2 + um4 (10)

The extremal points of this free energy are found from

∂fT
∂k

= 0→


m = 0

k = 0

k =
√
−c′1
2D

(11)

∂fT
∂m

= 0→

m = 0

m =

√
−(c′1k2+Dk4+t)

4u

(12)

Now, from eq. (11) one can see that k 6= 0 only for c′1 < 0, or γ2/κ > c1.
Thus, we must have a transition from a ripple phase to a uniform phase
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which is related to the rigidity parameter γ2/κ. To find out which phases
are involved in this transition, consider the case c′1 > 0, so that k = 0, then
eq. (12) is reduced to m =

√
−t/4u, which implies that one can have m 6= 0

only for t < 0.
Joining these two conditions one concludes that for γ2/κ < c1 there are

two phases: smectic A (m = 0) for t > 0, denoted in the introduction
as Lα, and smectic C (m = constant 6= 0) for t < 0, which we denoted
before as Lβ′ . As the membrane rigidity term γ2/κ is reduced, the Lβ′ phase
becomes unstable to a ripple phase Pβ′ with decreasing wavelength given by

k = 2π/λ =
√
−c′1/2D. This weakening of the rigidity occurs when the

hydration increases.
Now, for c′1 < 0 we may have k 6= 0. Replacing k =

√
−c′1/2D in the

non-zero solution for m in eq. (12) one gets

m =
1

2

√
1

u

(
c′21
4D
− t
)

(13)

therefore, m → 0 as t → (c′1)
2/4D from below. The transition is from

the ripple phase P (β) at low t to the smectic A phase Lα at high t. This
phase boundary line meets the Lα-Lβ boundary line at the Lifshitz point
(γ2/κ, t) = (C, 0).

All the above mentioned characteristics for the phases Lα, Lβ′ and Pβ′ ,
plus others described (qualitatively) below, are shown in the phase diagram
of fig. 5. Notice the qualitative resemblance of this diagram with the exper-
imental diagram of fig. 2.

3 Symmetric phases, asymmetric phases and

chirality

Recall that the OP is a two-dimensional vector. In the previous section I
simplified the problem to the case where ~m and ~k were parallel. However, a
number of interesting phases can be found if that assumption is relaxed. Let
us do that by defining the OP as

~m = (mx,my)

mx = mL
1 cos(qx) (14)

my = m0 +mT
1 sin(qx)
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where no constant longitudinal component of the OP is included because this
problem does not leave any stable phases for such a component. When the
ripples are assumed to be only along the x direction, three phases can be
found in in achiral LB: P

(1)
β′ , P

(2)
β′ , and P

(3)
β′ , all of which are associated to

symmetric ripples (i.e. each membrane is symmetric under reflection through

the midplane followed by a translation). Both P
(1)
β′ and P

(2)
β′ have the same

membrane symmetry, but the P
(1)
β′ phase has order parameter with both

parallel and orthogonal components, while P
(1)
β′ has only parallel component.

In P
(3)
β′ the order parameter makes a complete revolution with identical period

has the ripple period, and it is said to be a spiral phase. More precisely, we
have

P
(1)
β′ → m0 6= 0, mL

1 6= mT
1 = 0

P
(2)
β′ → m0 = mT

1 = 0, mL
1 6= 0

P
(3)
β′ → m0 = 0, mT

1 = mL
1 6= 0

(15)

A graphical representation of these three phases is shown in fig. 6 (phase

P
(3)
β′ is shown in part (C) over an asymmetric ripple in the membrane; this

is proper of chiral LB, see below).
Even though the present theory showed that ripples should be symmetric,

experiments often report asymmetric ripples. To account for this, one needs
to include a chiral term to the free energy

f ′c = fc + εik(∇i∇jh)mj,mk (16)

Then one finds that above mentioned phases can also exist in chiral LB, how-
ever, P

(3)
β′ looses its ripple symmetry in chiral systems, and its denomination

is changed to P
(3∗)
β′ . In addition, chiral LB can develop two more phases:

P
(4∗)
β′ and P

(5∗)
β′ , both with asymmetric ripples. Just as P

(2)
β′ , P

(4∗)
β′ has an OP

parallel to the direction of the ripples. P
(5∗)
β′ differs from P

(4∗)
β′ in that its

period is doubled. Illustrations of the phases P
(3∗)
β′ and P

(4∗)
β′ are shown in

fig. 6
Finally, the present theory allows for a stable two-dimensional ripple

structure, with ondulations both along x and y. Its existence is still to
be found, as I think are some of the above mentioned phases, since I could
not locate studies that given experimental account of them.
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4 Discussion and Conclusion

A phenomenological Landau free energy theory has shown relative success in
characterizing the phases and phase transitions of lipid bilayers. At its core
is the notion that a divergence in the orientation of the molecules has an
energy cost that is reduced by bending the membrane surface. The theory
accounts for the possibility of asymmetric ripples, which have been inferred
experimentally and computationally [5]. Other phases deduced in this the-
ory differentiate among themselves not by the symmetry of the membrane,
but by the orientation of its molecules relative to the vector normal to the
membrane surface. Other approaches do not predict this variety of phases
[2, 3], and even experiments have not shown such classification, to the best
of my knowledge. This is most likely due to the fact that current microscopy
techniques cannot image lipid bilayers with the required level of detail fast
enough. New advances in biological microscopy techniques, such as those
based in coherent anti-stokes Raman scattering [7, 8] may help elucidate this
questions, as they are specially sensitive to lipids and do not need the in-
troduction of exogenous agents (e.g. fluorophores), and thus can permit a
better manipulation of the hydration and temperature.
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A B C D 

Figure 1: Lipids and lipid bilayers (LB). (A) All atom model of DPPC,
(B) coarse grained version bead-spring model used in simulations, (C) LB in
liquid phase Lα, (D) LB in tilted gel phase Lβ′ . Fig. adapted from ref. [5].
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Figure 2: Experimental phase diagram for DMPC, plotted as a function
of temperature and hydration. Solid lines indicate first order transitions.
Arrows indicate directions of increasing tilt in the Lβ′ phase. The rightmost
schematic shows, from top to bottom, the forms of the phases Lα, Pβ′ and
L′β. Fig. adapted from ref. [3].

Figure 3: Definition of the two-dimensional order parameter ~m ≡ ~n −
( ~N.~n) ~N , where ~n is the orientation of the lipid and ~N is the orientation
of the normal to the membrane surface. Fig. adapted from ref. [4].
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x 

Figure 4: Caricature of the microscopic coupling mechanism between the
molecular tilt and membrane curvature. (A) divergence of the molecular tilt
~m gives rise to (B) the spontaneous curvature of the membrane, characterized
by the height h(x). Fig. adapted from ref. [4].
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Figure 5: Theoretical mean-field phase diagram for one-dimensional ripple
structures. Besides the uniform phases Lα (~m = 0, or smectic A) and Lβ
(~m = constant 6= 0, or smectic C), three non-uniform phases are present: P

(1)
β′

(symmetric), P
(2)
β′ (symmetric), and P

(3)
β′ (symmetric if achiral and asymmet-

ric if chiral). There is a 1st order phase transition between P
(1)
β′ and the spiral

phase P
(3)
β′ . The point (γ2/κ, t) = (C, 0) is a Lifshitz point. Fig. adapted

from ref. [4].
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Figure 6: Representation of the vector order parameter ~m, indicated by
arrows in the symmetric (A) P

(1)
β′ and (B) P

(2)
β′ phases and in the asymmetric,

chiral (C) P
(3∗)
β′ and (D) P

(4∗)
β′ phases. Fig. adapted from ref. [4].
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