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Abstract:  
 

This essay describes what a quantum phase transition is and one way of proving its very 
existence for an Ising Model. Quantum-classical mapping is discussed and showed that quantum 
problem in d spatial dimension can be reduced to classical problem in (d+z) effective dimension. 

The existence of an exact solution for one dimensional quantum Ising model is cited and it is 
compared to the previous estimates for density of kinks. 

 

 

Introduction and Background. 

This paper studies quantum phase transitions and describe them based on the knowledge we have 
obtained in the class. As an example I focus on Quantum Phase transitions for an Ising Model 
and also give a real example of it in nature. Studying Classical phase transitions in vast details 
motivated some physicists to do the same for Quantum Phase Transitions. After all, the systems 
of interest are governed by Quantum rules in microscopic level and when temperature 
approaches to zero it seems reasonable that the role of Quantum fluctuations can in principle 
become important compared to thermal fluctuations which are responsible for Classical phase 
Transitions.  

The first task is to show that Quantum phase transitions exist. This can be done by looking at two 
different regimes of a system and check that if there is one state or at least two. If there are two 
then at zero temperature and in the absence of thermal fluctuations one could argue that 
somewhere there should be a nonanalytic transition between these two phases and since the 
system is in absolute zero temperature, the transition is a quantum phase transition. I show this 
approach for the Ising Model by studying the two states of it in two extremes:  (1) when a 
coupling constant for spin interactions are so large compared to the external field, (2) when the 
coupling constant is so small compared to the field.  

Doing Quantum mechanics is usually a bit harder than doing classical physics for large systems. 
Particularly, in the case that physicists in this field are interested in, the Hamiltonian of the 
system are composed of a kinetic part and a potential part. In Classical physics these two 
Hamiltonian commute and hence the partition function factorizes, however in Quantum physics 
they don’t necessarily commute and as a result the partition function bears time dimension 
evolution with itself. This motivated the authors of this field to think about some possible 
mapping between Quantum phase transitions and classical phase transitions. They were 
successful in this investigation and could find some mapping and analogy between the two 
physics. I devote parts of this paper to show a mapping between the Quantum phase transitions 
and Classical ones and their dimensional relations.  

Solving any problem in approximation and in asymptotic limits is always useful and gives us 
some feeling about the physics of the problem and its qualitative behavior in general. However, 
it can’t be a replacement for an exact solution. Fortunately, the Quantum Ising model is solvable 
in 1D. I devote a brief part to asserting this fact. 1-dimensional Quantum Ising model is of 



essential interests in this field, quantum phase transitions, and Sachdev[1], on of a pioneers in the 
field, recognized that as one of the two prototypical models on which understanding of quantum 
phase transitions is based[2].  

I am interested in Quantum physics. Whatever topic that I encounter to I would like to figure out 
the physics of it in quantum regime and see how the reality of world is really revealed in 
microscopic level. What is the very nature of nature and how can this problem in particular help 
me and open a new window for me to understand it? That is my general motivation in physics 
which reduces to any specific case and make my direction in any part of physics that I study.  

Singularities discussed in Quantum phase transitions are in ground states and hence at absolute 
zero temperature whereas almost all experiments are in nonzero temperatures. That brings this 
question up that what is the impotency of studying quantum phase transitions? Sachdev [1] 
answers this question that although the system might not reach the critical point in terms of 
temperature and coupling constants, the thermodynamic and dynamic properties of many 
systems near the critical point can be understood upon understanding the physics of the system at 
the critical point. In addition, for some systems one can argue that there is a quantum critical 
point which is physically inaccessible to the system; nevertheless the physics in vicinity of it can 
be derived from the quantum phase transitions discussions.  

 

 

 

What is a quantum phase transition?  

 
Continuous or second order phase transitions which occur at ground state of a system and at 
absolute zero temperature due to quantum fluctuations which come from Heisenberg’s 
uncertainty principle are called quantum phase transition [1,4].   

Following [1] , let us study quantum phase transition definition more formally. Assume a lattice 
with Hamiltonian H = H0 + g H1 where g is a dimensionless coupling constant. In general for a 
finite lattice H(g) is analytic. However, if H0 and H1 commute i.e. if they correspond to 
conserved quantities then they can be diagonalized with the same eigenvectors which are 
independent of g, although eigenvalues are still functions of g. In this case a level-crossing can 
possibly happen at some g = gc the ground state and an exited state reach the same value and 
make a nonanalytic point for the ground state (see Fig 1)[1].  



 

Fig 1. Eigenvalues, E, of Hamiltonian H(g) vs g. Level-crossing may occur for an infinite lattice 
when H0 and H1 commute.(Credit to [1]) 

Level-crossing usually occurs in infinite lattice. When the system is finite what most likely 
happens is an avoided level crossing (see Fig 2) instead of level-crossing. 
 
 

 
Fig 2. Avoided level crossing for a finite lattice. (Credit to [1]) 

 
However as the size of the system gets larger the avoided level crossing becomes sharper and 
leads to a nonanalyticity at g = gc. No matter what is the origin of the nonanalyticity and where it 
occurs, in a finite system or infinite one, we consider it as a quantum phase transition when it 
appears in the ground state energy of a system.  
 
Here my focus is on second order quantum phase transitions. It can be put in this way, loosely 
speaking, that the fluctuation characteristic energy ∆ in these transitions vanishes as the coupling 
constant g approaches its critical value. This vanishing is usually modeled as power law [1] : 
 

 
where J is the energy scale of a characteristic microscopic coupling. There is also a correlation 
length scale in this theory which diverges as g approaches gc. This correlation length scale can be 
the length scale which determines the exponential decay of correlations at equal time in the 
ground state [1]:  
 

 
 

where Λ is a momentum cutoff. Now, using the last two proportionalities one obtains, 



 

 
 

The exponent z is called dynamic critical exponent and as it will be discussed it appears in the 
relation between dimensions of quantum system and classical system in quantum-classical 
mapping. Having introduced basic concepts and notations, I go to the next topic which considers 
the possibility of existence of quantum phase transitions.  
 
 
 
 
 

There exists a quantum phase transition:  
Quantum Ising Model 

 
To be specific I focus on quantum Ising model and show that there are two different states for 
this model for two extremes of the coupling constant and hence there should be a transition. At 
the end, I introduce a real example of this model which exists in nature.  
 
The Hamiltonian of the quantum Ising model is [1] 
 

 
Here J is the positive exchange constant which determines the microscopic energy scale and g is 
a positive dimensionless coupling which is used to carry the system through its different phases. 
The spin operators above are the usual Puali matrices which act on site i of a d-dimensional 
lattice and the sum in the second term is a nearest neighbor summation.  
 
I want to study two extremes g << 1 and g >> 1 . Let’s start with g >> 1. In this case the first 
term in the Hamiltonian dominates and to the leading order in 1/g , the ground state is  
 

 
That is a product of eigenstates of the Pauli matrix in x-direction. More formally in terms of the 

eigenstates of  [1], 

 
Now notice that the eigenvalues of the Pauli matrices in z-directions are uncorrelated in the 
above ground state for large g. Hence, 
 



 
 

That’s when the corrections from the perturbation have not been considered. Adding them to the 
leading term one expects the correlation still remain short-range and be of the form [1]  
 

 
 

where |xi – xj| is the spatial distance between site i and j. Now I like to find the correlation of  
in small g and see if there is a way to start from the above relation and get to the other one. So 
let’s consider the case g << 1. In this case the second term in the Hamiltonian dominates. For g = 
0 the spins are either all up or all down [1] : 
 

 
For small g some of the spins flip. Let call the ground state obtained by the perturbation theory 
from the above states for a small g, |0>. The nature of the above two states, all up or all down, 
suggests that in this case [1] 
 

 
 
where N0 is the spontaneous magnetization of the ground state. Looking at the above correlation 
relation and the one introduced for large g, one would realize that there is no way for states that 
satisfy these two relationships to transform into each other analytically as a function of g [1]. As 
a result there must be a critical value g = gc at which the spin correlator for large distances 
changes from on to the other function above. This is the location of quantum phase transition. 
Therefore I conclude that there exists a quantum phase transition for an Ising Model. A physical 
realization of this Ising model in experiment is CoNb2O6 which have been studied by Coldea and 
collaborators [6]. Opposed to LiHoF4 which has long range interactions, CoNb2O6 has nearest 
neighbor interactions which is what required for our example in this section.  
 
 
 
 

Quantum-Classical Mapping 
 
 

It will be so interesting if we find out that we can solve the quantum phase transition problems 
by tools of Classical phase transition that we have already built. Looking at literatures you figure 
out that this is really possible. Riger and Young [5] studied quantum phase transitions for Ising 
spin glass in a transverse field in 2D and indeed used an effective classical system in 2+1 
dimensions and Monte Carlo simulations to deal with their problem. They found z = 1.5 and  ν = 



1.0. So our observation tells us at least in some cases there are classical analogs for the quantum 
problem. The question is why such a correspondence exists and how different quantities are 
related in this analogy.  In this section I briefly answer these questions.  
 
Following [3] I first look at the partition function which is a generator function for 
thermodynamics properties 
 

 
Where the Hamiltonian composed of  

 
a kinetic part plus a potential part. As mentioned in the introduction in Classical system these 
two parts commute and hence the partition function factorizes  
 

 
 
 

The kinetic part does not make any singularity in the free energy because it comes from some 
Gaussian integrals. So the study of a Classical system is reduced to a study of a static time 
independent system which lives in d dimensions.  
 
Quantum problems, in contrast, do not let us in general to have decoupled kinetic and potential 
parts, the partition function does not factorize and indeed the static and dynamic are usually 
coupled. The density operator, exp(-H/kT) looks like a time evolution operator in imaginary time 
τ = 1 / k T = -i2 π θ / h where θ is the real time here. When T = 0, time ranges from zero to 
infinity and an extra dimension naturally adds to the system. For a classical system, say a 
classical ferromagnet, with reduced temperature t and external magnetic field B close to the 
critical point the singular part of the free energy scales as  
 

 
where yB is a critical exponent and b is positive scale factor. At zero temperature it turns out that 
for a quantum phase transition the singular part of the free energy scales as  
 

 
 

where t = |g – gc| / gc. The reason is that the extra parameter, the imaginary time, scales as the 
length to the power z. Now we observe that a quantum phase transition in d dimensions is related 
to a classical phase transition in (d+z) dimensions [3] near the critical point at zero temperature. 
It is a well-known fact [1, 4, 7, 8, 9, 10, 11, 12] that the quantum statistical problem in d-
dimensions at zero temperature can be converted to the classical problem in d+1 dimensions. 
What I showed above is a bit different though. The above argument showed that for the critical 
properties the effective dimension of the system is d+z instead of d+1 [4]. Here z is the 
dynamical exponent and it can be an integer like 1 or even a fractional number. As a result the 



effective dimension of a quantum system near the critical region may even become greater than 
the upper critical dimension of the system. That has its own consequences. Fig 3. shows the 
effect of such a phenomenon for the phase transition in the antiferromagnet MnCl2.4H2O where 
the value of the critical exponent β varies with temperature and at zero temperature reaches its 
mean field theory value[4,13] as a consequence of this effect.  
 

 
Fig 3. Dependence of critical exponent β to temperature. (Credit to [4])  

 
Up until now we did not use any exact solution for the obtained result. However such a solution 
for 1D Ising model exists which make the topic of last section of this paper.  

 
 
 

Existence of an exact solution for 1D Quantum 
Ising Model 

 
I like to end this paper by asserting that an exact solution for one dimensional quantum Ising 
model exists. Dziarmaga [2] found this solution and showed that the problem is solvable exactly. 
Moreover, the exact result is not far from the approximation that had been made before that. 
Following [2] let’s visit the problem briefly here. The phase transition for one and two 
dimensional Ising model occurs at g = 1. When g is small and the system is infinite it is 
impossible to pass the critical point without exciting the system. Therefore, the system winds up 
in a quantum superposition of up and down states with finite domains of up-spins and down-
spins which are separated by kinks. A kink is the first place in which a spin flips. Average 
density of these kinks depends on the transition rate [2].  
 
We approximate g(t) which derives the system to the critical point as a linear function of time 
g(t) = t / τQ where τQ is the transition time. Ref. [14] estimated density of kinks based on the 
linear assumption for dependence of the coupling constant in time as  
 



 
 

Dziarmaga [2] shows that doing formal calculations and finding the exact result, the above 
estimate will change by a factor of (1/2π) = .159 . That shows the estimate was good enough. 
The other good news is that numerical simulations also confirm the prefactor of .16 in 
calculating the density of the kinks [2] which is a verification of the correctness of the exact 
solution.    
 
 

Conclusion 
 
In conclusion, I visited the phenomenon of quantum phase transition in this paper. It was defined 
that what a quantum phase transition is. What its underlying physics can be and how critical 
quantities are related to each other in the critical region through power laws. A nonanalyticity in 
ground state of a system which occurs at zero temperature as a result of quantum fluctuations, 
i.e. a quantum phase transition, then acquired a proof for its existence in nature. I showed a proof 
of it for quantum Ising model by avoiding unnecessary technical details in this paper and 
mentioned one observable example of it which has already been studied. An interesting analogy 
between quantum phase transition and classical phase transition exists that I reviewed briefly in 
this paper and mentioned that the quantum Ising model is essentially solvable and was indeed 
solved and the results show good agreement with simulations.  
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