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Abstract:

This essay describes what a quantum phase trans#tiand one way of proving its very
existence for an Ising Model. Quantum-classical piag is discussed and showed that quantum
problem in d spatial dimension can be reduced assital problem in (d+z) effective dimension.

The existence of an exact solution for one dimeasiguantum Ising model is cited and it is
compared to the previous estimates for densitynékk

I ntroduction and Background.

This paper studies quantum phase transitions asatide them based on the knowledge we have
obtained in the class. As an example | focus om@uma Phase transitions for an Ising Model

and also give a real example of it in nature. Stuglflassical phase transitions in vast details
motivated some physicists to do the same for Quaamthase Transitions. After all, the systems
of interest are governed by Quantum rules in mawpg level and when temperature
approaches to zero it seems reasonable that tnefrQuantum fluctuations can in principle
become important compared to thermal fluctuatiohgkvare responsible for Classical phase
Transitions.

The first task is to show that Quantum phase tt@msi exist. This can be done by looking at two
different regimes of a system and check that if¢he one state or at least two. If there are two
then at zero temperature and in the absence aoh#tdiuctuations one could argue that
somewhere there should be a nonanalytic trandmatvween these two phases and since the
system is in absolute zero temperature, the tiansg a quantum phase transition. | show this
approach for the Ising Model by studying the twatess of it in two extremes: (1) when a
coupling constant for spin interactions are sodargmpared to the external field, (2) when the
coupling constant is so small compared to the field

Doing Quantum mechanics is usually a bit hardem th@ng classical physics for large systems.
Particularly, in the case that physicists in tesdf are interested in, the Hamiltonian of the
system are composed of a kinetic part and a patgudrt. In Classical physics these two
Hamiltonian commute and hence the partition fumcfaxctorizes, however in Quantum physics
they don’t necessarily commute and as a resulpahition function bears time dimension
evolution with itself. This motivated the authoffshus field to think about some possible
mapping between Quantum phase transitions andadaphase transitions. They were
successful in this investigation and could find samapping and analogy between the two
physics. | devote parts of this paper to show apimgpbetween the Quantum phase transitions
and Classical ones and their dimensional relations.

Solving any problem in approximation and in asyrtiptlmits is always useful and gives us
some feeling about the physics of the problem &ndualitative behavior in general. However,
it can’t be a replacement for an exact solutionturately, the Quantum Ising model is solvable
in 1D. | devote a brief part to asserting this fdetimensional Quantum Ising model is of



essential interests in this field, quantum phaeesitions, and Sachdev[1], on of a pioneers in the
field, recognized that as one of the two prototgpmodels on which understanding of quantum
phase transitions is based|[2].

| am interested in Quantum physics. Whatever ttmat | encounter to | would like to figure out
the physics of it in quantum regime and see howehéty of world is really revealed in
microscopic level. What is the very nature of natand how can this problem in particular help
me and open a new window for me to understandhit® iB my general motivation in physics
which reduces to any specific case and make mygtéhrein any part of physics that | study.

Singularities discussed in Quantum phase transitwa in ground states and hence at absolute
zero temperature whereas almost all experiments arenzero temperatures. That brings this
guestion up that what is the impotency of studyjogntum phase transitions? Sachdev [1]
answers this question that although the systemtmiggvyeach the critical point in terms of
temperature and coupling constants, the thermodignama dynamic properties of many

systems near the critical point can be understgaeh wnderstanding the physics of the system at
the critical point. In addition, for some systenme@an argue that there is a quantum critical
point which is physically inaccessible to the sgst@evertheless the physics in vicinity of it can
be derived from the quantum phase transitions dgous.

What isa quantum phase transition?

Continuous or second order phase transitions wdgchr at ground state of a system and at
absolute zero temperature due to quantum fluctusitichich come from Heisenberg’'s
uncertainty principle are called quantum phasesitiam [1,4].

Following [1] , let us study quantum phase transitilefinition more formally. Assume a lattice
with HamiltonianH = Hp + g H; whereg is a dimensionless coupling constant. In generah f
finite lattice H(g) is analytic. However, HoandH; commute i.e. if they correspond to
conserved quantities then they can be diagonalizébdthe same eigenvectors which are
independent of g, although eigenvalues are stilttions of g. In this case a level-crossing can
possibly happen at some g #the ground state and an exited state reach the galme and
make a nonanalytic point for the ground state [5gel)[1].
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Fig 1. Eigenvalues, E, of Hamiltonian H(g) vs gvekcrossing may occur for an infinite lattice
whenHpandH; commute.(Credit to [1])

Level-crossing usually occurs in infinite lattid®hen the system is finite what most likely
happens is an avoided level crossing (see Figskgaal of level-crossing.
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Fig 2. Avoided level crossing for a finite lattiq€redit to [1])
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However as the size of the system gets largervbeled level crossing becomes sharper and
leads to a nonanalyticity at g . ¢No matter what is the origin of the nonanalysi@nd where it
occurs, in a finite system or infinite one, we ddes it as aquantum phase transitiomhen it
appears in the ground state energy of a system.

Here my focus is on second order quantum phassiti@rs. It can be put in this way, loosely

speaking, that the fluctuation characteristic epeérgn these transitions vanishes as the coupling
constant g approaches its critical value. Thissfaing is usually modeled as power law [1] :

v
A~ JIg— gl

where J is the energy scale of a characteristicasdopic coupling. There is also a correlation
length scale in this theory which diverges as gagghes g This correlation length scale can be
the length scale which determines the exponengiedy of correlations at equal time in the
ground state [1]:

§7! ~ Alg — gel”,

whereA is a momentum cutoff. Now, using the last two pmipnalities one obtains,



A~E*

The exponent z is called dynamic critical exporaard as it will be discussed it appears in the
relation between dimensions of quantum system lsgical system in quantum-classical
mapping. Having introduced basic concepts and iooistl go to the next topic which considers
the possibility of existence of quantum phase itams.

There existsa quantum phase transition:
Quantum Ising M odel

To be specific | focus on quantum Ising model amalsthat there are two different states for
this model for two extremes of the coupling constard hence there should be a transition. At
the end, | introduce a real example of this modakttv exists in nature.

The Hamiltonian of the quantum Ising model is [1]

Hy=—-Jg) 6 —J) &6}
i (ij)

Here J is the positive exchange constant whichriah@tes the microscopic energy scale and g is
a positive dimensionless coupling which is usedatiwy the system through its different phases.
The spin operators above are the usual Puali reatvitich act on site i of a d-dimensional
lattice and the sum in the second term is a neasgghbor summation.

| want to study two extremes g << 1 and g >> 1t'd.start with g >> 1. In this case the first
term in the Hamiltonian dominates and to the legdirder in 1/g , the ground state is

|0) :H| -,

That is a product of eigenstates of the Pauli matrk-direction. More formally in terms of the
eigenstates i [1],

| =i = (D +1 1) /V2,

| <) = (i = i)/V2,

Now notice that the eigenvalues of the Pauli matria z-directions are uncorrelated in the
above ground state for large g. Hence,
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That’'s when the corrections from the perturbatiamehnot been considered. Adding them to the
leading term one expects the correlation still ienshort-range and be of the form [1]

(0

where [x— x| is the spatial distance between site i and j. Nbke to find the correlation ¢7i

in small g and see if there is a way to start ftbmabove relation and get to the other one. So
let’'s consider the case g << 1. In this case thersterm in the Hamiltonian dominates. For g =
0 the spins are either all up or all down [1] :

=111 or =]

For small g some of the spins flip. Let call thewgrd state obtained by the perturbation theory
from the above states for a small g, |0>. The eablithe above two states, all up or all down,
suggests that in this case [1]
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where N is the spontaneous magnetization of the grourid.dtaoking at the above correlation
relation and the one introduced for large g, onald/oealize that there is no way for states that
satisfy these two relationships to transform irdoleother analytically as a function of g [1]. As
a result there must be a critical value g.=awhich the spin correlator for large distances
changes from on to the other function above. Thike location of quantum phase transition.
Therefore | conclude that there exists a quantuas@lransition for an Ising Model. A physical
realization of this Ising model in experiment isNEpOgs Which have been studied by Coldea and
collaborators [6]. Opposed to LiHghich has long range interactions, Ce@phas nearest
neighbor interactions which is what required for exsample in this section.

Quantum-Classical M apping

It will be so interesting if we find out that wercaolve the quantum phase transition problems
by tools of Classical phase transition that we trelweady built. Looking at literatures you figure
out that this is really possible. Riger and YouBpdtudied quantum phase transitions for Ising
spin glass in a transverse field in 2D and indesstian effective classical system in 2+1
dimensions and Monte Carlo simulations to deal withr problem. They found z = 1.5 and=



1.0. So our observation tells us at least in soasesthere are classical analogs for the quantum
problem. The question is why such a corresponderists and how different quantities are
related in this analogy. In this section | briedlyswer these questions.

Following [3] I first look at the partition functrowhich is a generator function for
thermodynamics properties

Z = Tye~H/ksT

Where the Hamiltonian composed of
H = Hkin ¥ Hput

a kinetic part plus a potential part. As mentioimethe introduction in Classical system these
two parts commute and hence the partition fundaatorizes

Z = Zkianot

The kinetic part does not make any singularityhie free energy because it comes from some
Gaussian integrals. So the study of a Classicé¢syss reduced to a study of a static time
independent system which lives in d dimensions.

Quantum problems, in contrast, do not let us iregarto have decoupled kinetic and potential
parts, the partition function does not factorizd ardeed the static and dynamic are usually
coupled. The density operator, exp(-H/KT) looke l&ktime evolution operator in imaginary time
t=1/KT=-i2z 6/ hwhered is the real time here. When T = 0, time ranges\fe@ro to

infinity and an extra dimension naturally addshe system. For a classical system, say a
classical ferromagnet, with reduced temperatureltexternal magnetic field B close to the
critical point the singular part of the free enesgyles as

f(t.B) = b~ %f(tb'/", Bb¥B).

where ¥ is a critical exponent and b is positive scaledacAt zero temperature it turns out that
for a quantum phase transition the singular patheffree energy scales as

f(t,B) = /)_(d-l_:)f(‘f /)1”3‘1’. B bYB)

wheret = |g — @| / g.. The reason is that the extra parameter, the imaagtime, scales as the
length to the power z. Now we observe that a quarnghase transition in d dimensions is related
to a classical phase transition(d¥z) dimensions [3] near the critical point at zero penature.

It is a well-known fact [1, 4, 7, 8, 9, 10, 11, 1Bt the quantum statistical problem in d-
dimensions at zero temperature can be convertdgktdassical problem in d+1 dimensions.
What | showed above is a bit different though. @bheve argument showed that for the critical
properties the effective dimension of the systenhtisinstead of d+1 [4]. Here z is the
dynamical exponent and it can be an integer like dven a fractional number. As a result the



effective dimension of a quantum system near thiearregion may even become greater than
the upper critical dimension of the system. That itown consequences. Fig 3. shows the
effect of such a phenomenon for the phase transiicghe antiferromagnet MnE#iH,O where
the value of the critical exponefitvaries with temperature and at zero temperat@ehes its
mean field theory value[4,13] as a consequenchiskffect.
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Fig 3. Dependence of critical expon@nb temperature. (Credit to [4])

Up until now we did not use any exact solutiontfar obtained result. However such a solution
for 1D Ising model exists which make the topicaxdtlsection of this paper.

Existence of an exact solution for 1D Quantum
|sing M odel

| like to end this paper by asserting that an egakition for one dimensional quantum Ising
model exists. Dziarmaga [2] found this solution ahdwed that the problem is solvable exactly.
Moreover, the exact result is not far from the agpnation that had been made before that.
Following [2] let’s visit the problem briefly her@he phase transition for one and two
dimensional Ising model occurs at g = 1. Whengmall and the system is infinite it is
impossible to pass the critical point without exgtthe system. Therefore, the system winds up
in a quantum superposition of up and down stat#s fivite domains of up-spins and down-
spins which are separated by kinks. A kink is ir& place in which a spin flips. Average
density of these kinks depends on the transititan[&].

We approximate g(t) which derives the system tactitecal point as a linear function of time
g(t) = t /tgwheretgis the transition time. Ref. [14] estimated densitkinks based on the
linear assumption for dependence of the couplingstamt in time as
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Dziarmaga [2] shows that doing formal calculatiansl finding the exact result, the above
estimate will change by a factor of (&J2= .159 . That shows the estimate was good enough.
The other good news is that numerical simulatides eonfirm the prefactor of .16 in
calculating the density of the kinks [2] which igexification of the correctness of the exact
solution.

Conclusion

In conclusion, | visited the phenomenon of quanplrase transition in this paper. It was defined
that what a quantum phase transition is. Whatritkedying physics can be and how critical
quantities are related to each other in the critiegion through power laws. A nonanalyticity in
ground state of a system which occurs at zero testyre as a result of quantum fluctuations,
i.e. a quantum phase transition, then acquireaafor its existence in nature. | showed a proof
of it for quantum Ising model by avoiding unnecegsachnical details in this paper and
mentioned one observable example of it which haesadly been studied. An interesting analogy
between quantum phase transition and classicakphassition exists that | reviewed briefly in
this paper and mentioned that the quantum Isingeiedessentially solvable and was indeed
solved and the results show good agreement withlatrans.
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