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Abstract

This paper examines the dynamic scaling behavior of the binary
fluid model, and hence show that the static scaling hypothesis breaks
down. Mode-coupling method is examined in detail. By following
Kandanoff and Swift’s method, we show that the transport coefficients
diverge near the vicinity of the critical region. We also find that the
scaling law of the transport coefficients, ηλ∗ ∝ ξ4−d−η.

1 Introduction

In this paper, we investigate the dynamic property of binary-fluid model.
Mode coupling succeeds in predicting critical exponents and scaling func-
tions in 3d. However, this method does not work quite well for general d.
Therefore, RG comes into play and proves to be a great success in finding
scaling relations and its critical exponents.

First, we will illustrate why static scaling behavior fails because of the
dynamic property of binary fluid model.We will derive the expression of for
thermal and viscous diffusion constant. With the expressions of thermal and
viscous diffusion constant, we use dimensional analysis to find the scaling
form of the relaxation rate. Hence, we show that static scaling behavior
breaks down because of the relaxation rate. Second, we will work out the
mode coupling method by introducing Liouville equation, which is the real-
ization of continuity equation in quantum mechanics. We can retrieve the
scaling function presented in Kadanoff and Swift’s paper, where the transport
coefficient λη̄ diverges as ξ4−d−η.
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2 The breakdown of static scaling

Binary fluid model exhibits a segregation of the gas and the liquid gas. We
can denote the gas state by state 1 and the liquid state by state 2. The order
parameter that describes the difference of the two different states is defined
by ψ. We define the current that passes between the two states by ~jψ. The
conservation law states that dψ/dt = −∇·~jψ. If the external force is absent,
the current depends on the gradient of chemical potential which determines
the concentration difference. Therefore,

~jψ = −λ∇µ = −λ
∂ψ

∂µ
|T,P∇ψ = − λ

χψ
∇ψ (2.1)

where we define the relation ∂ψ
∂µ

by the susceptibility of the order param-
eter χψ and λ is the transport coefficient. The negative sign shows that
the particles move from the high density state to the low density state. We
can find the dispersion relation by combing Equation (2.0.1) with the con-
servation law, in which we expand the order parameter in Fourier series,

ψ(~r) =
∫
~k
ei
~k·~r−iωψtψ~k.

ωψ = Dck
2 (2.2)

where the diffusion constant Dc is λ
χψ

. Likewise, we can obtain the relation

for the thermal constant.

DT =
λ

Cp
(2.3)

Dν =
η̄

ρ
(2.4)

where λT is the thermal conductivity, and Cp is the constant pressure specific
heat. 1η is the shear viscosity.

Next, we present a heuristic argument for the failure of static scaling
theory in binary fluid model. Static scaling theory gives the expressions of
the susceptibility of χψ and the correlation length, ξ.

χψ ∝ ξ2−η (2.5)

1Let’s define the thermal current density jQ = −λT∇T . Based on the conservation
law, −∇jQ = dE

dt = dE
dT |p

dT
dt = Cp

dT
dt . So, Dt = λT

Cp
. Similary, for Dν , use Navier-Stoke’s

equation.
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where ξ is the correlation length and diverges near the critical point Tc,
ξ ∝ (T − Tc)−ν .2

Let’s find the scaling form of the relaxation rate, ωψ. We have two con-
ditions; the wavelength is larger than ξ and the wavelength is shorter than
ξ. If the wavelength is larger than ξ, the relaxation rate vanishes. Combine
Equation (2.0.2) with the definition of the diffusion constant, Dλ = λ/χψ.
We have the following relation,

ωψ ∝ ξ−z(kξ)2 (2.6)

where z = 4− µ.
If the wavelength is shorter than the correlation length ξ, χpsi should be

decay as k−2+η.3 So, the relaxation rate is

ωψ ∝ kz (2.7)

Combine the case of k < ξ and the case of k > ξ.

ωψ(k) = kzΩ(kξ) (2.8)

Note that if kξ � 1, Ω(kξ) = (kξ)−z+2. And if kξ � 1, Ω(kξ) = 1. However,
the exponent z is smaller than 4− µ according to Hohenberg and Halperin.
The static scaling theory fails. The transport coefficient diverges in the
vicinity region of the critical point.

3 Coupling mode method

In this section, we will introduce the building block of the coupling mode
method. Due to the influence of the relaxation rate, the theory can be stated
in the context of non-equilibrium statistical mechanics. Therefore, the state
of the system should be time dependent. We can describe the system of N
particles as

〈~p1~p2 . . . ~pN , ~r1~r2 . . . ~rN |t〉 = 〈p, r,N |t〉 (3.1)

Since the state of the system is time dependent, the time evolution of the
system can be described by Liouville theorem(

∂

∂t
+ L

)
|t〉 = 0 (3.2)

2In class, ,we show that χ ∝ t−γ and ξ ∝ t−ν . Combine this with Fischer scaling law,
ν(2− η) = γ.

3Note that [k] = L−1.
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This is a fancy version of the total time derivative of the state. We can find
the matrix element of L,

〈p′, r′, N ′|L|p, r,N〉 =
N∑
α=1

[
∂r̄α
∂t

∂

∂~rα
+
∂~pα
∂t

∂

∂~pα
] (3.3)

=
N∑
α=1

[
∂H

∂~pα

∂

∂~rα
− ∂H

∂~rα

∂

∂~pα
]× 〈p′, r′, N |p, r,N〉 (3.4)

with the orthonormal relation that

〈p′r′, N ′|p, r,N〉 = δN,N ′
∏
α=1

δ(~pα − ~p′α)δ(~rα − ~r′α) (3.5)

The equilibrium state is described by the canonical ensemble equilibrium
distribution4. If L act on the equilibrium state, we have

L|〉 = 0, and 〈L = 0 (3.6)

Any physical quantity X in this state is given by the time average over the
grand canonical ensemble, where the matrix element is Xop.

Now, we can apply the notion in fluid dynamics to the quantum state.
The continuity equation is

∂A

∂t
= −∇ ·~jAop(~r) = [L,Aop(~r)] (3.7)

So, we may define the following quantities and their related current. Define
the number operator as nop(~r), the momentum density as gop(~r), and the

energy density as εop(~r). We can also define their currents, ~j(~r), ~jε and τij(~r)
for number density, energy and momentum, respectively. The correlation
function of the currents and the momentum are shown

β〈gi(~r)jk(~r′)〉q = δ(~r − ~r′)nop(~r)δik (3.8)

β〈gi(~r)jεk(~r′)〉q = δ(~r − ~r′)[εop + pop(~r)] (3.9)

β〈gi(~rτ(~r′))〉q = 0 (3.10)

The above equations can be verified by applying the commutator relations
shown before. Note that the second equation indicates the Galilean invari-
ance of the energy current. We need to introduce a parameter that de-
scribes the fluctuation of the system, sop(~r). sop is the entropy density, where

4Grand canonical ensemble is exp{−β[H(p, r)− µN ]}/[h3NZ(β, µ)].
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sop(~r) = 1
T

[εop − 〈jεv〉nop] and 〈jεv〉 is 〈ε+ p〉/〈n〉. Therefore, the entropy
current is

~jεop =
1

T
[~jεop −

〈ε〉+ 〈p〉
〈n〉

~jop] (3.11)

Now, consider how the equilibrium state can be described by the entropy
density so that we can monitor the local property of the system. The quan-
tum state can be described as

|i, ~q〉 = ai(~q)|〉 〈i, ~q| = 〈|ai(−~q) = q2λ(~q, s) (3.12)

where we introduced a set of operators that are orthogonal to each other.

a1(~q) =
sop(~q)

[kBρCp(~q)]1/2
(3.13)

a2(~q) =
(ρβ)1/2

〈n〉
c(~q)nop(~q) +

(
1

kBρ
[

1

CV (~q)
− 1

Cp(~q)
]

)1/2

sop(~q) (3.14)

a3(~q) = gx(~q)(β/ρ)1/2 (3.15)

a4(~q) = gy(~q)(β/ρ)1/2 (3.16)

a4(~q) = gz(~q)(β/ρ)1/2 (3.17)

Note that the operators carry out the thermodynamic quantities and they
agree with the dimensional analysis in which the [ai(~q)] = O(1).

It is natural to ask the following question.What is the L’s eigenvalue of
|i, ~q〉? This relates to the transport process of the system. Suppose a system
with the following relation, |〉t = e−st|〉, where s is the relaxation rate. The
transport state can be obtained by setting the relaxation time to be infinite,
and its eigenvalue is sν .

sν |ν, ~q〉R = L|ν, ~q〉R (3.18)

Let’s take the inner product of the transport state and other ”local” state,
〈i, ~q|.

〈i~q|L|ν, ~q〉 = 〈i, ~q|L|ν, ~q〉R (3.19)

=
∑
j

〈i, ~q|L|j, ~q〉〈j, ~q|ν, q〉R + 〈i, ~q|L(1−
∑
j

|j, ~q〉〈j, ~q|)|ν, ~q〉R

(3.20)
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where we define the projection operator, P = 1−
∑

j |j, ~q〉〈j, ~q|. We can find

the expression for P |ν, ~q〉 =
1

sν − PLP
∑

i PL|j, ~q〉〈j, ~q|ν, ~q〉R by applying

the iteration method. Note that L and P is commutable to each other. So,
Equation (3.20) becomes∑

j

[sνδij − Lij(~q − Uij(~qsν)]〈j, ~q|ν, ~q〉R = 0 (3.21)

where Lij(~q) = 〈i, ~q|L|j, ~q〉 and Uij = 〈i, ~q|LP
1

s− PLP
PL|j, ~q〉. By linear

algebra, we know that the determinant of the matrix sδij − Lij − Uij is 0 in
order to have a non-trivial solution of the state 〈j, ~q|ν, ~q〉.

It is important to note that the matrix element Uij entails the previ-
ously defined thermodynamic quantities. Uij is very important in our later
calculations.

4 Perturbation theory and critical exponents

In this section, we will use the matrix element Uij to find the critical expo-
nents of the transport coefficient. Let’s further expand the matrix element
Uij.

Uij)(~q, s) = 〈i, ~q|LP
1

s− PLP
PL|j, ~q〉 (4.1)

= 〈ai(−~q)LP
1

s− PLP
PLaj(~q)|〉 (4.2)

= 〈|[ai(−~q), L]P
1

s− PLP
[aj(−~q), L]〉 (4.3)

= −~q2〈|~ji(−~q)P
1

s− PLP
P~jk(~q)|〉 (4.4)

where ~ji is the corresponding current of ai. There are 25 = 5 × 5 Uijs.

Some terms can be eliminated by the argument that ~j3,4,5 is proportional to
the momentum density g(~qi). The correlation function of such currents is 0.
Consider the following the matrix element,

−〈|sop(−~q)LP
1

PLP − s
PLsop(~q)|〉/kB (4.5)
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where we apply the fact svδij = λq2/ρ.6 And the matrix index, i, j must
be the same. Therefore, we can set the operator ai to be proportional to
sop(~q)/[kBρCp(~q)]

1/2. Compare Equation (4.4) with Equation (4.5), we have

U11 = q2λ(~q, s) (4.6)

For the viscosity, we do the same thing. Based on the dispersion relation
of η. we have the following relation,

−q2η(~q, s) = 〈|gy(−~q)LPXPLgν(~q)|〉β (4.7)

where X is 1/(PLP − s).
We can apply perturbation theory to this expression. We can expand the

relaxation rate around a wave vector,

s′ν(~q) = sν1(~q
′) + sν2(~q − ~q′) (4.8)

where ~q and ~q − ~q′ are the two different transport processes. Expand the
operator L,

L =
∑
r′

∫
d3q′

(2π)3
|ν ′, ~q′〉Rsν′(~q′)L〈ν ′~q′| (4.9)

Note the index R and L are the eigenstates of the operator L, in which they
have an orthonormal solution, R〈ν, ~q|ν ′, ~q′〉R = δν,ν′δ(~q − ~q′)(2π)3. Hence, we
can write down the representation for Xq. We find the projection operator
eliminates the transport states. So, (〈(PLP − s)〉ν~q)−1 = sν − s7. Hence we
can write down the representation of Xq.

Xq =
∞∑
ν′=6

|ν ′, ~q〉RL〈ν ′~q|
s′ν(~q)− s

(4.10)

By applying Equation (4.10) to Equation (4.7), we have

−q2ηTT (~q, s) =
1

2
β

∫
d3q′

(2π)3
〈|gν(−~q)La1(~q′)a1(~q − ~q′)〉〈|a1(~q′ − ~q)a1(−~q)Lgy(~q)|〉

sT (~q′) + sT (~q − ~q′)− s
(4.11)

6This is the modification of the dispersion relation of Equation (2.3).
7Based on the definition of P , P = 1 if ν > 5
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This form is analogous to the one loop expansion of Feynman diagram. A
factor of 1

2
avoids the over-counting of the exchanging terms. With the

definition that a1(~q) =
sop

[kBρCp]1/2
, we have

q2ηTT =
β

2k2B

∫
d3q′

(2π)3
|Mq,q′ |2

[ρCq(~q′)ρCp(~q − ~q′)][sT (~q′ + sT (~q − ~q′))− s]
(4.12)

where M~q,~q′ = 〈|gy(−~q)Lsop(~q′)sop(~q − ~q′)|〉. It’s not hard to evaluate this
matrix. We follow the formalism of Equation (4.1)− (4.4). We will get

Mq,q′ = 〈|gy(−~q)(−i~q′)̇~jsop(~q′)sop(~q−~q′)|〉+〈|gy(−~q)[i(~q−~q′)]·~jsop(~q−~q′)sop(~q′)|〉
(4.13)

Now we replace jsop by jε(~r) = [~jε −
〈ε+ p〉
〈n〉

~j(~r)]/T . Furthermore, using

the correlation functions of Equation (3.11), we find that

Mq,q′ = (−i~q′y)β−1〈|[sop(~q − ~q′) + (1/T )pop(~q
′ − ~q)]sop(~q − ~q′)|〉 (4.14)

+ i(~qy − ~q′y)β−1〈|[sop(−~q′) + (1/T )pop(−~q′)]sop(~q′)|〉 (4.15)

where pop is the pressure operator, pop = (〈n〉op − n) 〈ε+p〉〈n〉 . Based on the
Kandanoff and Swift’s argument that the entropy operator is an artificial
product so that its correlation with pressure vanishes. So, the matrix element
Mq,q′ becomes

Mq,q′ = [i~q′yCp(~q − ~q′ + i(~q′y − ~q)Cp(~q′)]ρk2BT (4.16)

We now can reduce the formula for the viscosity to

q2ηTT (~q, s) =
1

2β

∫
d3q′

(2π)3
(~qy)

2
[Cp(−~q + ~q′)− Cp(~q′)]2

Cp(−~q′ + ~q)Cp(~q′)
(4.17)

1

sT (~q′) + sT (~q − ~q′)− s
(4.18)

In the static limit, where the wave vector and the relaxation time go to 0.
So, the expression in the bracket of Equation (4, 17) can be written as a
derivative form.

ηTT (~0, 0) =
1

8β

∫
d3q′

(2π)3
(q′y)

2
[ ∂
∂q′x
Cp(~q

′)]2

sT (~q)[Cp(~q′)]2
(4.19)
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Now, scaling law and dimensional analysis come into play. Based on scaling-
law analysis, the wave vector is measured under the scale of the correlation
length in the vicinity region near the critical point. Therefore, we can set
the integration limit to be ξ. By the same method, we can estimate the
derivative of Cp and the relaxation rate sT (~q′) in the critical region.

∂

∂q′x
Cp(~q

′) ∝ q′x
(q′)2

Cp(~q
′) (4.20)

s ∝ λ(~q, s)q2

ρCp(~q)
= (λ/ρCp)ξ

2 (4.21)

The first equation is based on the assumption that the heat capacity near the
critical region is estimated by scaling law, which is related to the expression
of the correlation length. So, ∂

∂q′x
Cp(~q

′) ∝ Cp(~q′)
ξ−1 ( q

′
x

q′
). Note that q′x

q′
is the scale

approximation which estimates the value of the Cp in the critical region.
Furthermore, the relaxation rate can be estimated as a fixed value in the
critical region. s∗T = (λ/ρCp)ξ

−2. We can evaluate the integral based on
dimensional analysis and above approximations.

Integral ∝ Constant ∗
∫ ξ−1

dq′(q′)2 ∝ Constant ξ−3 (4.22)

where the constant is 1
β

ρCp
λ∗ ξ

2. So, we find that

ηTT (~q, s) ∝ 1

β

ρCp
λ∗

ξ−1 (4.23)

We proceed to find the critical exponent with the notion that Cp ∝ t−γ and
ξ ∝ t−ν , where t = (T − Tc)/Tc.

ηTT (~0, 0)λ∗ ∝ t−γ+ν ∝ ξ1−η (4.24)

Since Kandanoff studied the 3d case, we may write a general scaling law for
the transport coefficient without proof.

ηλ∗ ∝ ξ4−d−η (4.25)

This relation indicates that at least one of the transport coefficients must
diverge in the critical region. Thus, we show that the transport coefficients
diverges near the vicinity of the critical region, which is contradictory to the
result from the static scaling hypothesis.
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5 Summary

In this paper, we revisit the mode-coupling method introduced by Kadanoff
and Swift and show that the transport coefficient is indeed diverges near
the critical region. Kadanoff and Swift applied the operator formalism in
quantum mechanics and examined the critical behavior of the transport co-
efficients of the binary fluid model. However, this method only works suc-
cessfully well in the 3d case. For higher dimension case, we should employ
ε = 4 − d expansion that is commonly used in RG analysis, and get the
recursion relation to find the critical exponents.
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