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In this article we shall explain how the Abelian N' = 2 twisted supergauge theory
in 1 4+ 1 dimensions shows phase-transition in the very precise sense of the moduli
space of the theory changing discontinuously as a function of the Fayet-Illiopoulous
parameter (r) and the topological 6-term. This model allows for exact evaluation of
renormalization effect on the critical point. It also gives a very analytically controlled
scenario of seeing the two most important features of the liquid-vapour transition
that the two phases have the “same” symmetries (here in a very precise sense) and
there being the possibility of going around the critical point and thus transiting be-
tween the phases without encountering any singularity. The analogy is so compelling
that the discoverer of this profound effect, Edward Witten, on page 29 of his revolu-
tionary paper [1] comments, “.like liquid and gas, Calabi-Yau and Landau-Ginzburg

look like different phases..”

A MOTIVATIONAL NUMEROLOGY

By a Landau-Ginzburg theory one would generically mean any theory with an unique
classical ground state and that should be a degenerate critical point. There have been many
reasons, stemming from surprising numerical coincidences, to believe that there should be a
natural relation between (superconformal) Landau-Ginzburg theories and non-linear sigma
models (with Calabi-Yau target manifolds) and thats what led to the initial path-breaking
progress in this direction. (which eventually came to be known as “Gepner Models” in

algebraic-geometry literature)

Here we list two very famous and deep results about these two aforementioned theo-

ries and notice one such coincidence,



e Consider the Landau-Ginzburg theory with a single chiral superfield X, with a
superpotential W(X) and a Kahler potential K(X,X) with the action, S =
[dzd*0K (X, X) + ([ &*d*0W (X) + c.c)

It was shown in a series of seminal works by Vafa, Lerche and Warner that if the
superpotential is of the form W (X) = XT*2 for some P € Z* then at its IR fixed

point the central charge of this theory is (...it is known that unitary N' = 2

_3_
1+2°
superconformal field theories with central charge < 3 are minimal models and thats

what facilitates these analyses..)

e [t is known that a non-linear sigma model with a Calabi-Yau target manifold has
vanishing 1—loop beta-function and that it can be made to flow to a quantum CFT
(at large Kahler moduli) and at that non-trivial IR fixed point it can be intuitvely
argued (also known with some rigour) that its central charge is = 3d where d = the

complex dimension of the Calabi-Yau manifold.

Now if one has say n CFTs with central charges {c;}/= then the central charge

of the tensor product of these n theories is the sum sz ¢; of the individual central

charges. So if one takes the tensor product of n such Landau-Ginzburg theories then

i=n 3P;

i—1 p13- One can infact choose

the central charge of the resulting theory will be >

all the Landau-Ginzburg theories to be identical and coming from a quintic potential
(ie P, = 3 for all ¢) and consider 5 of them and then this sum becomes = 9. So if
there has to be a conformally invariant non-linear sigma model which is “related” to this

tensor product theory then there better exist a Calabi-Yau manifold at complex dimension 3.

Now it so happens that there does exist a very well-known Calabi-Yau manifold at 3
complex dimensions, called the “quintic 3-fold”, and its the zero-set in CP?* of the degree 5
homogeneous polynomial, 27 + z5 + 25 + 23 + z2. (..though it should be noted that Gepner
went on to do a more detailed spectrum matching of the theories to accumulate evidence

for such a correspondence to exist..)



A MOTIVATION FROM PATH-INTEGRAL

Consider the above Landau-Ginzburg theory (where the Calabi-Yau correspondence
seemed possible) i.e with 5 superfields and all P, = 3. Then the superpotential is
W = Z?:l X?. Then one can see sort of a heuristic reason why this Landau-Ginzburg
theory will see the quintic-3-fold - at least in a region of the moduli space where the Kahler

potential can be ignored. Then one is effectively looking at the following partition function,

5
7 — /H DXieifdQZdQQ( 5 XJ+cc)

i=1

On this path-integral one does the change of variables, & = X7 and & = §—1 (for

i=2,.,5). Then the superpotential reads as, W = & [1 + & + & + & + &) .

The important thing to note is that for this change of variables, the Jacobian is a

constant = 5 and hence the partition function becomes,

5
7 ~ / HDSie” d?2d?0(&: [1+€3+63+€5+€3))
=1

Now the above is proportional to the delta function, 6(1 + &5 + &5 + &5 + £2)

One can then easily see that if (X, Xs, X3, X4, X5) are coordinates on C5 then the moduli
space to which the above delta function restricts the fields to is the same as the zero-set of the
quintic 3—fold in local coordinates (&, &s, &4, &5) in that open-set of CP* where X; # 0. One
observes that there is an invariance in the definition on rescalings of the form X — X e
and hence the theory propagating on this Calabi-Yau manifold not exactly equivalent to the

Landau-Ginzburg theory one started with but to an orbifold of it.

Some important points that need to be noted about the above argument are,

e [t needs some detailed justification as to when the contribution of the Kahler potential
can be ignored and that the above “semi-classical” argument gains more meaning
and this isn’t completely well-understood since it is related to taking the large gauge

coupling limit but strong circumstantial evidence exits.

e The crucial thing that allowed for the localization of the moduli space of the theory

is the fact that the Jacobian turned out to be a constant. In a more general scenario



of arbitrary P; this constancy of the Jacobian would turn out to be equivalent to the
condition that the first Chern class of the zero-set of the superpotential is trivial and
hence if and when the localization does happen its always to a Calabi-Yau non-linear

sigma model.

Given these motivations a tantalizing possibility opens up of being actually able to show
such a dramatic phenomenon of “phase-transition” of one CFT into another. Thus the
search began for an interpolating theory and it lead to a much general construction by

Edward Witten, some of which will be described in this article.

DEFINING THE THEORY

The theory we will be looking at is a twisted N' = 2 supersymmetric Abelian gauge field
theory in 1 + 1 dimensions. It suffices to look at super-renormalizable theories since they

are simple representatives of their universality classes.

The schematic definition

The Lagrangian we will be looking at can be heuristically thought to consist of four parts

as follows,

L = Lscalar chiral kinetic T Lsuperpotential + Ltwisted gauge kinetic + Ltopological D,o

where we also choose an Abelian gauge group U(1)® and a shall be the index summing
over 1 to s.
Writing the above in terms of N'= 1, 1 + 3 dimensional superfields, ® and V,

(..we will eventually define the dimensional reduction to 1 + 1 dimensions..)

Lscalar chiral kinetic = f d2yd49 Zl (T)ieQ 2q QiaVa (I)z
L4 Lsuperpotential = - f d2yd9+d9_w(q>i)|§+:0_—:0 +h.c

— 1 2,740
hd Ltwisted gauge kinetic — T Za 1e2 f d yd QEaEa

Ltopological D,y — — Za Tq f deDa + % f dgyd'l)



e ®; are a a bunch of scalar chiral superfields which in the y — 6 coordinates (y* =

at + it 0%) is given as,
(z,0) = 3(y) + V20"a(y) + 0°0uF (y)

with ¢, 1 and F' being the scalar, fermionic and the auxiliary field components of the

scalar chiral multiplet.

o ()i, is the charge of the ®; under the U(1), factor and e, is the gauge coupling for
each U(1), factor.

e For each a (i.e each factor of U(1) in the gauge group) the V is of the following form

also in the above coordinates,

. _ . . 1 .
V = —0%" 0%, + 00,0, — i0,0°0%\, + §9a0a6d9aD

o7

where v, A and D are the gauge field, fermionic and the auxilliary components of the

vector gauge multiplet. This also defines the D in the Liopological Do term.

o X = ﬁi{lir,@_} is the twisted chiral superfield which is the field strength of the
supergauge field in 1 4 1 dimensions (..being in 1 + 1 dimensions allows for this new
possibility instead of the conventional Yang-Mill’s curvature term..). Here D is the
gauge superderivative and 4, — refer to the 1 and the 2 spatial direction in the
3 + 1 dimensions from where one is dimensionally reducing to get the theory in 1+ 1

dimensions.

The explicit form of the Lagrangian after dimensional reduction

We call the time direction in 1 + 3 dimensions as the 0 and using the labels 1, 2 and 3
for the spatial directions, we define the dimensional reduction to be making the fields living
in 1+ 3 to be constant along the 1 and the 2 directions. Hence all derivatives with respect
to ! and 2% (equivalently y' and y?) will be dropped. One often redefines a new y° and y!
as ¥ = 2% and y' = 23. One defines new =+ fermionic components as (¢!, 9?) = (Y=, ™),

(¢1,¢2) = (¢7,¢+)-

After the aforementioned dimensional reduction and redefinition it follows that,



Lscalar chiral kinetic — Z / d2y( p¢lD ¢1 + “P (DO + Dl)w i+ “/}+z< Dl)eri + ’Fz|2
-2 Z UaUana¢2¢z \/_ Z Qza Uadj—&-zw + Uadj z¢+z + Z D Qm¢z¢z
- Z\/_Z Q1a¢2 ¢ )\+a erz a - Z\/_Z Qia¢i 7aw+i - )\Jrawfi))

L4 Lsuperpotential = - f dQ?J (E gZ)V 8(]518(1) ¢ ZerJ) + h.c
L Ltwisted gauge kinetic — Za e2 f d2 ( UOl ,a 1DZ + i5\+a((% - 81))\+a + Z‘S\*a<80 + al))\*a - ’apO'aP)

yd0td0~ X p- _gi—g —

b Ltopological D, — _Za TafdeDa + %fdzydv =
L yd=dO+ S|+ _g-_o where t = ir + %

The integrand of the Lpy term is called the “twisted superpotential”, denoted as W,
(compare to the W defined earlier), and its extremely crucial to note that W(X) ~ .
This linearity has deep ramifications and will be discussed in different contexts in the sections
titled, “A first look at the “singularity” at r =07, “The renormalization shift of the critical

value” and “The phase diagram”.

ANALYZING THE POTENTIAL FOR THE BOSONIC FIELDS

For the sake of analyzing the vacuum expectation value its only necessary to look at the
bosonic fields and by carefully looking at the above Lagrangian one realizes that (thankfully!)
not all the content is important and that the bosonic fields are responding only to the
following potential (from now on assuming the gauge group to be just U(1) and hence there

is no more sum over a, the label for the different U(1) factors) ,

=—D2+Z|F|2+2JJZQ ek

(equations of motion set the auxiliary (non-dynamical) fields D and F; to, F; = & o W and

D = —e*(32; Qiloi* — )

The condition for the R-charge anomaly to cancel forces the sum of the U(1) charges of



the fields to be 0. In compliance with that we choose to have n + 1 fields in the theory
and n of them (say {S;}:Z}) will have charge 1 and one more field (say P) will have
charge —n. Further U(1) gauge invariance forces the superpotential, W, to be of the form,
W = P.G(S1, 5, ...,S,) where G is a homogeneous polynomial of degree n. One further

chooses G to be such that its “transverse” that is all S; = 0 is the only solution of the n

equations, % = 0. (..among other technicalities it ensures that the zero-set of G in CP"*
is a smooth algebraic variety..) Let us use the notation of s; and p for the scalar part of
the superfields, S; and P. Then under the above specific choice of the superpotential, the

earlier mentioned potential for the bosonic fields evaluates to,

1
2¢e2

oG
U =[Gl +1p* Y51 + 55D+ 20 Isil” +n?[pf*)

and the equations of motion sets the auxiliary D field to D = —e*(}_; |s:i|* — n|p|* — r)

Now we can look for the two “phases” of the system at asymptotically large values
of |r| through an analysis of the minima of the above U and in either limit we will justify

why the classical analysis is an exact quantum result.

Effective low energy physics at » > 0

Since r > 0, clearly D can’t be equal to 0 unless, some of the s; are non-zero. But by the

%12 term

transversality condition of G, if some of the s; are not zero then the term |p|* ", |%

can be zero only if p = 0. So the vanishing of D sets a constraint on the scalar components

as >, [si> =r.

Now since some of the s; are non-zero and p = 0, the only way the last term of U

can be 0 is when ¢ = 0. So the remaining constraint to get U = 0 is to set G(s;) = 0.

So classically the moduli space of fields on which the potential minimizes for » > 0
is when the following four conditions are satisfied i.e, p = 0 = 0 and Y ,|s;|* = r and
G(s;) = 0. The two conditions are equivalent to that of having a non-linear sigma model but
more is true. Since G is a homegenous polynomial of degree n in n variables, its zero-set is a

Calabi-Yau manifold and hence the theory is that CF'T mentioned at the beginning of this



article, a non-linear sigma model with a Calabi-Yau target manifold. Thus the Calabi-Yau

condition can be seen to emerge as a consequence of making the R-symmetry non-anomalous

Now note that the Kahler class of the G = 0 hypersurface is » and from the theory
of non-linear sigma model one knows that in the » > 0 limit the theory is weakly coupled
and hence in that limit the above classical analysis will become an exact quantum result

and one then has a quantum CFT.

Effective low energy physics at r < 0

For r < 0, the vanishing of D clearly requires having p # 0. Since p # 0, and G is
assumed to be transverse it follows that the vanishing of [p[> 3, |9 |? requires all the s; = 0.
So the vanishing of D necessarily requires, |p| = v/—rn. But by a gauge transformation one

can get the argument of p to vanish.

Now if one goes to the r < 0 limit then the p fields are becoming infinitely massive
and hence can be thought to be integrated out leaving behind a theory of massless fields
s;. And fluctuations of these massless fields is governed by a polynomial effective potential
thought of as, v/—rW (s;) and that is degenerate at its unique critical point (origin) and
hence its a Landau-Ginzburg theory (an orbifolded one since inspite of giving a vev to the
s;8, the homogeneity of W preserves a remnant Z, symmetry under the transformation,

s; —+ €s; where € is a n'* root of unity).

As stated in the opening section, there exists compelling evidences that in the IR
the above Landau-Ginzburg theory renormalization flows to a quantum CF'T and using the
notation defined there the central charge count matches for the two candidate phases as,

S (;2) = 3(d = n —2) (P;s are for a “diagonalized” basis for G and P = 0 in

i=1 1+Pi:n72

the Calabi-Yau phase). This degree of freedom matching is a way of making it precise as
to why like liquid and vapour here too the two phases have the “same” symmetry, though
there exists subtle geometric differences and the phases/moduli spaces are only not exactly

isomorphic but are birationally equivalent as algebraic varieties.



A first look at the “singularity” at r =0

From the above analysis it seems that there might be a “singularity” at » = 0 in going
from the Landau-Ginzburg to Calabi-Yau models. This is unlike the normal notion of a
singularity associated with a phase-transition since the familiar situations are invariably
related to the infinite size limit of the substance or here of the world-sheet. But there
still seems to emerge a singularity even if one is working on compact spaces. It is largely

attributable to a failure of the effective compactness of the target space.

The problem begins when s; = p = 0 since then U becomes constant and equal to

e2r2
2

and hence one can go to arbitrarily large values of o at no energy cost! One notes that
this phenomenon of having a “flat direction” is a consequence of the fact that the classical
twisted superpotential is linear in the twisted supergaugefield. Classically this flat direction
is the reason for a singularity/criticality to exist in the theory since at s; = p = r = 0, the
ground state is singular/non-normalizable as the potential isn’t diverging at infinity in field
space. This is akin to the situation of the ground state becoming undefined in the £k = 0

limit of the simple harmonic oscilator with %kxz potential.

But we shall now see that this classical critical point of r = 0 undergoes quantum

modifications of two different kinds.

QUANTUM ENERGY OF THE TOPOLOGICAL TERM HELPS GO AROUND
THE CRITICAL POINT

Quantum theoretically one knows that the 6-dependance of an U(1) gauge theory in
1 + 1 dimensions is given by, %minnez(n — %)2. Hence in the classically critical regime of

o — oo the potential goes as minnezé\ﬂQ where t =t +n with n € Z.

Hence this quantum effect makes the potential non-zero even for r = 0 as long as
6 # 0 and hence allows for an energy range such that the spectrum is discrete and the
ground-state is normalizable where classically it wouldn’t have been. Its effect on the

phase-diagram will be stated in the section titled, “The Phase Diagram”.
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EXACT RENORMALIZATION SHIFT OF THE CRITICAL POINT

The singularity at r = 0 came from the region in the field space where s; = p = 0 and
|o| is large. One notes that its the linearity of the twisted chiral superpotential that ensures
that ¥ doesn’t contribute to the potential energy of the system, except through providing
mass to the chiral superfields in proportion to |o|?, as can be seen in the bosonic potential.
We need to analyze the theory in its classical critical regime of all other fields vanishing

but large o.

Keeping in view the larger questions where this current phase structure analysis nat-
urally comes up, let us slightly generalize this discussion and use the notation of {B; }"+1
to denote the n + 1 fields, {P, Sy, S, .., Sp} and let them have arbitrary U(1) charges {¢;}
(..instead of the earlier assignment of {—n,1,1,..n times.., 1} consistent with R-charge
anomaly cancellation..) The deviation from 0 of the expectation value of the B;B; comes
from the 1—loop correction to that. This is in turn coming from the quantum 2—point
correlation function, (B;B;) where the classical mass of the B; fields comes from the term

|02 5" ¢2| B;|*(...which upto rescalings of the definition of charge is the erstwhile term,
20012 (X2, [sif* + n?[pl?)...),

1 1 lo|
i = "= il i 5 i)in—
zq/ ST — 3 2t = 5= (O a)int?

In the language of renormalization this is the 1—loop redefinition of the twisted super-

potential (classically which was W () ~ t3) to

~ 7 i ai 2
Weffectwe( ) (t o Zqzln‘%’> 2T < n (,u))

The above is interpreted to see that the singularity or the critical value of the system is

neither at the classical value of » = 0 nor at the quantum mechanical value of ¢ = 0 but it

is actually at the the point,

. cmtzcal
teritical = Weritical + = 5 § qzln‘%

This is effectively a renormalization shift (to say r = o # 0,0 = 0) of the value where

the criticality happens. One further notes that this is an exact result and that there are no
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higher order corrections can be argued from either the holomorphy principles of Seiberg or
by doing a power counting of the higher loop diagrams to show that they are vanishing in

the large |o| limit,

THE PHASE DIAGRAM

As in the original case of our interest, if > ¢; = 0 (the same condition as for R-charge
anomaly cancellation!) one sees that there are no logarithmic renormalization corrections to
the twisted superpotential and hence the We ffective Temains linear in¥ (as it was classically).
Hence inspite of renormalization flow it remains possible for o to go arbitrarily large
without any cost to energy and thus giving rise to non-normalizable ground-states and that

is the singular behaviour at the point of phase-transition.

But if > ¢; # 0 then there is a |logo|* divergence in the energy and that prevents
any non-normalizable mode to ever develop for any value of € R and 6 € [0, 2] and hence
there are no singularities in the vacuum behaviour on the t-cylinder (..the “phase-space”..).
So that allows for a smooth quantum interpolation between non-homeomorphic classical

geometries! (but at the cost of having an anomalous R-charge)

Thus in our original Landau-Ginzburg(r < 0)/Calabi-Yau (r > 0) phase-transition
case the condition t..ii.0 = 0 is tantamount to renormalization shifting the critical point
tor = rg = g=in(n) # 0,0 = 0 (as defined earlier). Hence this topological parameter, 6
allows one to “go around” (like in liquid-vapour transition!) even the renormalization flow
corrected critical point by choosing a path in the phase space which keeps to non-zero
values of # around r = ry and hence avoids the singularity. Thus by choosing such a path,
one is most probably not just interpolating between the two phases (evidenced to be CFTs)
at the asymptotic values of r but is doing so via a single parameter family of CFTs. Being
able to exactly prove this belief (which for now is supported by renormalization theory) can

have deep ramifications in physics and mathematics.
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PROPOSALS FOR FUTURE RESEARCH DIRECTIONS

To the best of my knowledge the following three directions from here are still unex-
plored. Firstly, this construction apart from its pedagogic value as an exact model of
phase-transitions, when generalized for arbitrary homogeneous polynomial G of degree k,
is infact quite an analytically controllable demonstration of the physically very intutitive
Zamolodchikov’s c—theorem, c;r < cyy. In recent times there have been attempts to prove
the analogous a-theorem in four dimensions (like work by Zohar Komargodski and Adam
Schwimmer, arXiv:1107.3987). It might be a fruitful venture to see if an analogous phase-
transition model works there too. Secondly, its still not fully convincingly proven that the
IR flows of this theory at asymoptotic values of r is indeed to CFTs. Such efforts might
help produce more exact results/evidence/proofs of mirror symmetry. Lastly, it might be

worthwhile to try to generalize the above construction to other supergauge theories.
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