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Abstract

The sandpile model, introduced in 1987, was the first model to

exhibit self-organized critical behavior, that is, the system moved to-

wards its critical point without the need to tune any adjustable ex-

ternal parameter. In this paper, we look at the why these models

exhibit such non-intuitive behavior. We also look at some of the phe-

nomenology near the critical point, such as scaling laws and critical

exponents. Finally, we look at some experimental realizations of the

sandpile model.
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1 Introduction

In most systems which exhibit critical phenomena, there exist adjustable pa-
rameters which have to be finely tuned in order for the system to reach the
critical point. For example, in the Ising model, one needs to adjust both the
temperature and the external magnetic field to close to their critical values.
In the language of the Renormalization Group, these are the relevant direc-
tions of the critical fixed point that we are interested in. If such a system is
initially prepared such that the temperature and the external magnetic field
are far from their critical values, the system will not show critical behavior
even if other parameters are changed, or if the system is perturbed. Since
most systems with phase transitions exhibit the above behavior, it would
seem reasonable to guess that critical phenomena can be triggered only if all
relevant parameters have been fine tuned.
However, in 1987, Bak, Tang, and Wiesenfeld introduced the sandpile model,
which displayed spatial and temporal power laws and scale invariance, with-
out controlling the external parameters. The evolution of the system was
such that it spontaneously moved towards the critical point. Because of this,
the critical behavior exhibited by this model was termed as self-organized

criticality.
Self-organized criticality was gradually understood to be a feature of out-of-
equilibrium systems with a slow driving force. These models of SOC provide
a mechanism which can be used to explain the emergence of complexity in
many natural phenomena. The behavior of such systems is unlikely to be gov-
erned by the fine-tuning of parameters, and the complexity must arise from
the evolution of the system itself. In their original paper, Bak et al. claimed
that the ubiquitous 1/f can be explained in terms of SOC. A wide range of
other natural phenomena, such as naturally-occurring fractals, earthquakes,
rainfall patterns, have all been investigated in terms of these models of self-
organizing behavior spontaneous critical phenomena. In fact, the model has
also been used to analyze systems which have no connection to physics, such
as stock markets and sociology.
In this term paper, we will look at the sandpile model and its attendant criti-
cal behavior. In Section 2, we shall define the sandpile model and the rules of
its evolution. In Section 3 we shall look at the emergence of scale invariance
and power law behavior in the model. Section 4 looks at how SOC seen in
sandpile models are related to a real phase transition with absorbing states.
Section 5 looks at some experimental realizations of the model, as well as
some natural phenomena to which the model has been applied. Finally, in
Section 6, we summarize the main points and look at the current research
on the field.

2



2 The sandpile model

2.1 Sandpile model in 1 dimension

Consider a one-dimensional array of sites of length L. At each site, we can
place grains of sand, one on top of each other. With each site on the array,
we associate a number zn = hn+1, which measures the difference in height
between nearest neighbors. Adding a grain of sand at site n can then be
represented as

zn → zn + 1

zn−1 → zn−1 − 1 (1)

When zn at a particular site crosses a critical value zc, then one unit of sand
topples down to the adjacent site

zn → zn − 2

zn±1 → zn±1 + 1 (2)

The boundary conditions are such that grains of sand can only topple out
of the system on the right, that is, at the Nth site. The other boundary
is closed. If we start with all the sites empty and then add grains of sand
at random, is there some configuration toward which the system will always
tend?
It turns out that the final configuration is always the one where all the zn

Figure 1: Sandpile model in 1 dimension. Taken from [2]

have their critical values, and the heights are in descending order from the
closed boundary to the open boundary. We can see that if we add one more
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grain of sand to any of the sites, it will topple from one site to the other,
until it rolls off the final site and out of the system. So this final state is
stable with respect to perturbations and is called the minimally stable state.
This gives us a rough idea of how a system can evolve under its own laws to
a state where a perturbation propagates throughout the system (the grain of
sand can be added anywhere and it will travel until it falls off the system).
This is the sort of scale-free behavior one associates with critical phenomena.

2.2 Sandpile model in 2 dimensions

Most studies of the sandpile model was done in 2-dimensions, and we now
need to set up the rules governing the dynamics in 2 dimensions. Instead of
a 1D array, we now have an N ×N grid, and we can write down the addition
and toppling rules by modifying Eqs (1) and (2). The equivalent of Eq. (1),
is now

zx,y → zx,y + 2

zx−1,y → zx−1,y − 1

zx,y−1 → zx,y−1 − 1 (3)

On the other hand, the toppling rule when z(x, y) exceeds the critical value
is

zx,y → zx,y − 4

zx±1,y → zx±1,y + 1

zx,y±1 → zx,y±1 + 1 (4)

In the two-dimensional case, we work with free boundary conditions on all
sides. Any grain crossing the boundary is lost. If we add a grain of sand to a
site which is at the critical value of z(x, y), we trigger off an avalanche onto
the adjoining sites. If these sites themselves are at the critical value, then
the avalanche propagates, else it stops. A very important rule which one
must obey while adding subsequent grains of sand, is to allow all possible
avalanches to occur within the system before one adds another grain. In
physical systems, this would correspond to the situation where the frequency
of the driving force is small compared to the relaxation time-scale, that is,
when the system is driven weakly away from equilibrium.
Unlike the 1 dimensional case, the configuration where all zx,y = zc, is not
stable to perturbations, nor is it the final configuration starting from some
random configuration. Instead, all that can be said about the system is that,
given sufficient time, it will reach a steady state where on the average, the
number of grains added to the grid is the same as that lost at the boundaries.
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3 Scaling laws in the sandpile model

In this section, we look at the scaling behavior in the avalanches of the
2 dimensional sandpile model. This scaling behavior is similar to the one
exhibited by systems close to a continuous phase transition, and arise from
spatial and temporal scale invariance. It is important, however, to remember
that in the sandpile model and its variants, there is no real phase transition.
As we saw in the last section, once the slope at a point on the grid exceeds

Figure 2: Avalanches in 2D sandpile model.The dark regions show the size
of avalanches triggered by a single addition. Taken from [2]

the critical value zc, it sets of on avalanche, with grains toppling onto the
adjacent sites. These avalanches can be parameterized by three variables:

• the number of topplings s

• the area affected by the avalanche a

• the duration of the avalanche T

Though at first glance, it seems that the number of topplings, s and the
area a both measure the number of affected sites, one must remember that
a single site may topple more than once in a single avalanche, and hence the
two are truly different variables. The duration of the avalanche is defined as
the number of updates one must perform on the system before all the sites
become stable after the addition of one grain of sand.
From numerical simulations of the 2D sandpile model, it was found that all

of these variables have the following probability distribution

P (x) = x−τxG(x/xc) (5)
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Figure 3: Scaling behavior in the number of topplings in the 2D sandpile
model. Taken from [2]

Here, τx is the critical exponent associated with the variable x. G(y) is
a scaling function analogous to the scaling functions one writes down for
conventional critical phenomena. xc represents the cutoff for the system,
which is naturally determined by the size of the system. We are interested in
the asymptotics of the scaling function when its argument is small. In this
regime,

G(y) ∼ e−y (6)

As the system size (L) diverges, the cutoff xc itself has a power law behavior,
xc ∼ Lβx . This is analogous to finite-size scaling in conventional systems,
where the critical exponents are modified due to the system size being finite.
βx is also referred to as the fractal dimension. If one looks at the probability
distribution for the time duration of the avalanches, the exponent βT , which
gives the dependence of the time cutoff on the spatial dimensions of the sys-
tem, can be identified to be the same as the dynamical critical exponent z.
The fact that the various parameters of the sandpile model exhibit power law
scaling implies that, like systems near a second-order critical point, we have
scale invariance. Unlike systems in thermal equilibrium, the scale invariance
in these models of SOC are temporal as well as spatial, as exhibited by the
scaling of the time duration of the avalanches. This means that perturba-
tions at a given point in space and time can propagate at all length and time
scales, just as perturbations to systems near a second-order phase transition
propagates at all length scales due to the divergent correlation length.
The exponents τx and βx were used to define the universality classes of var-
ious sandpile models and their derivatives. Since these exponents had to be
extracted from numerical data, they were difficult to pin down accurately,
and so it was difficult to identify the universality classes of different models.
In order to better distinguish between various universality classes, one has
to perform a more involved treatment using the expectation values of the
various parameters, while holding another parameter fixed. This is defined
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in the following manner

E(X|Y = y) =

∫
dx x P (x, Y = y) (7)

It was assumed that these expectation values also follow a power law near
the steady state, E(x|y) = yγxy . It can be shown that these exponents γx,y

must satisfy

γxy = γ−1
yx (8)

γxyγyz = γxz (9)

Once these exponents have been found out, they can be used to relate the
cutoffs in the distributions of different variables. This follows simply from
dimensional analysis, by which one expects xc ∼ y

γxy

c . This means that

γxy =
βx

βy

(10)

Since the cutoff for the distribution of area is expected to scale as L2, one can
then extract βs and βT . One can also write down the relationships between
various scaling exponents like the scaling laws of regular critical phenomena.
In 2D, the above analysis yields

τa = 1 + 2(τs − 1) (11)

τT = 1 +
2(τs − 1)

z
(12)

where z is the dynamic critical exponent.
In this section, we have seen how scaling laws are observed in the avalanche
distributions of the sandpile model. These distributions are characterized by
power law distributions and scaling functions, which point a scale invariance
in the system. We also saw the relationships between the different scaling
exponents, analogous to scaling laws.

4 The connection between SOC in sandpiles

and a true phase transition

In this section, we shall look at connection between a variant of the sand-
pile model called the Manna sandpile model and a true second order phase
transition in a model with absorbing states. The Manna sandpile model has
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different rules than the one we outlined in Section 2, but numerical anal-
ysis seems to show that both models lie in the same universality class. In
this model, at every iteration, all sites with zxy ≥ 2 release two grains to
randomly chosen nearest neighbors. A grain of sand is added once all the
updates have taken place, and there are no more sites with zxy ≥ 2 left on
the lattice. On the other hand, the model with a true phase transition that
we will be looking at is called the activated random walker model, which we
shall discuss below.
We consider a periodic lattice with Ld sites, where each site is occupied by
zxy random walkers. The total number of random walkers is taken to be
N . Each random walker performs a random walk independent of the oth-
ers. However, if a particular site is occupied by only one random waler, it
is inactive until another walker falls onto the site and activates it. In this
model, if N > Ld, then there will always be some activity on the grid. There
will be at least one site where the occupancy zxy ≥ 2. On the other hand, if
N ≤ Ld, there is the possibility that the entire grid might become inactive.
This is called an absorbing state. If the density of random walkers ζ = N/Ld

is small, it is likely that for any initial configuration, the system will end
up in an absorbing state. The question is, what happens as we increase the
density, from 0 up to 1?
One can perform a mean-field calculation in the model by decoupling near-
est neighbors and ignoring correlations. This mean field solution shows that
there is a continuous phase transition in the system at ζc = 0.5. Above this
critical density, the probability of the absorbing state becomes so small that
the walkers can be active indefinitely. Below the critical density, any ran-
dom initial configuration will end up in an absorbing state. A more refined
analysis gives the critical density to be ζc = 0.75. One can also go ahead and
calculate the critical exponents in the theory.
One can see that this model with the activated random walkers and the
Manna model have similar local rules. However, one must remember that in
the Manna model, one can add grains of sand by hand, whereas grains may
be lost at the boundary. The random walk model, with periodic boundary
conditions, does not include such a possibility. In the language of the ARW
model, the Manna model adds one grain of sand to a random site every time
an absorbing state has been reached. Comparing the two models, one can
see that the in the steady state of the Manna model, the density of the grains
tends towards the critical density of the ARW model. The addition and loss
of particles is then balanced, and the steady state, as the name suggests, is
stable to perturbations.
One can therefore, go from a model with a true second-order phase transition
(the ARW model) to the Manna model in the following manner. The relevant
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variable, which has to be tuned in the ARW model is the particle density
ζ. Suppose one starts with the value of ζ just below the critical density ζc.
Given sufficient time, the system will become inactive. Suppose one adds a
walker to the system. The density now becomes ζ → ζ + 1/Ld. Suppose
that the addition of one walker does not make the density reach its critical
value. Then once more, after sufficient time, the system will become inactive.
On the other hand, if the addition of the walker pushed the density of the
critical density, the system would become active, and at some point, some of
the walkers would reach the edge of the grid. We now allow the walkers to
be lost at the edges. The rate of loss of walkers is given by dζ/dt ∝ −L−1ρb,
where ρb is the number of sites at the edge with zxy ≥ 2.
If the value of L is not large enough, the addition of one walker changes
the density by a finite amount. Above the critical density, the loss rate will
also be large for the same reason. So, if one starts off just below the critical
density, the ARW system will keep jumping from being overcritical to being
undercritical without sitting at the critical point, where the Manna model
sits. To ensure that one does indeed reach the Manna model, one has to
take the L → ∞ limit, which is basically the thermodynamic limit. In the
thermodynamic limit, the addition of a walker changes the density infinites-
imally, and the loss rate is also infinitesimal. The system can then reach the
critical point, and sit there as the gain and loss rates both go to 0. At this
point, the ARW model becomes equivalent to the Manna model in its steady
state.
It is interesting to note here that in the Manna and other sandpile models,
one has to wait for all avalanches to occur before adding another grain. This
means that the model needs external supervision, thereby reducing its cred-
ibility as a candidate for explaining true self-organized behavior in nature.
This point can be circumvented by looking again the how the ARW model at
its critical point becomes equivalent to the steady state of the Manna model.
It was postulated that the rate of addition is actually continuous, rather than
occurring at discrete time-steps. Self-organized critical behavior takes place
when the rate of addition h → 0+. If follows that the loss rate, ǫ should also
go to 0. However, to ensure that all avalanches take place within the system
before the addition of a new particle, one needs to ensure that h/ǫ → 0.
Even though the above process obviates the need for an external agent to
add particles at the right time, it comes with the price of introducing tun-
able parameters in the system, which are the addition and loss rates. Both of
these parameters have to be tuned to 0 in the manner specified above for the
system to exhibit SOC. It seems, therefore, that sandpile models may not be
as general models of SOC as they were originally thought to be. However,
certain natural systems do have slow rates of addition and loss, and for these
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systems, the sandpile model still serves as a good analysis tool of SOC.

5 Experimental realizations of the sandpile

model

Till now, we have looked at the sandpile model as a theoretical construct,
and most of the results that have been outlined earlier have been derived
from computer simulations. In this section, we will take a look at some of
the experimental realizations of the model.
The earliest experiments, in 1989, used real grains of sand to perform the
experiment. Though great care was taken to eliminate external sources of
error, such as the exact position where the grain had been added, and the
exact rate of addition of sand, the results did not match with the ones which
had been predicted from the original BTW paper. In particular, one did not
observe power law distributions in the size of the avalanches. It was then un-
derstood that the experiment had failed to take into account the properties
of real grains of sand. The sandpile model treats the sand grains as idealized
particles which hop from site to site without any forces acting on them. On
the other hand, in a real system, factors such as friction and inertia play a
role. In particular, grains of sand exhibit a sort of hysteresis effect. This
means that even when the slope exceeds the predicted critical slope, the par-
ticles do not move due to static friction. Once the slope has been increased
further beyond the critical value, the particles start moving. This meant that
the system behaved as if it is close to a first order or discontinuous transition
rather than a continuous transition.
To overcome these problems, experiments were performed with various other
materials. It was realized that by changing the shape of the grains, and
making them more elongated, rather than round, one achieved better results.
Finally, in 1996, a group in Oslo performed the experiment with grains of
rice. They used different types of rice, so that they could vary the aspect
ratio (ratio of the thickness to the length of a grain of rice). They also used
rice grains with different degrees of surface smoothness to have a handle on
the role of friction in the experiments.
The experiment was set up with two vertical plates placed parallel to each

other. The distance between the plates was adjusted so that it was of the
order of the width of one rice grain. So essentially the experiments studied
the sandpile model on 1 dimension. However, it was found that varying this
width did not have a strong effect on the results. One of the edges of the
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Figure 4: Profile of the slope for rice grains with large aspect ratio. Taken
from [8]

setup was kept open, and grains were added at the other edge. The exper-
iment used a CCD camera to look at the profile after fixed time intervals
(15s), and avalanches were studied by looking at successive temporal images
and comparing the local slopes.
It was found that if one used rice which had a smaller aspect ratio, that is,
roundish grains, the experimental results did not match with the predictions
of the sandpile model. On the other hand, grains with large aspect ratios
did indeed show the expected scaling behavior. It was also observed that for
grains with large aspect ratio, the smoothness of the surface did not make
much of a difference to the avalanche distributions. This is because for round
grains, the particles tend to roll down the slope whereas for flatter grains they
slide down the slopes. The rolling grains acquire a larger kinetic energy and
this energy dominates over the local interactions which are responsible for
the behavior of the sandpile model. The longer sliding grains have lower
kinetic energy and are hence more affected by local interactions.
The results from the experiment showed that by using elongated grains, one
could get a realistic approximation of the predictions of the sandpile. Later,
similar experiments were performed to study a two-dimensional realization of
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the sandpile model. The SOC behavior of sandpile models was also studied
in other more exotic experiments, such as superconductors in magnetic fields.

6 Summary and Conclusions

In this term paper, we looked at a model for self-organized criticality, that is,
systems which show features such as scale invariance and power law scaling
without the tuning of external parameters. In Section 2, we introduced the
model, called the sandpile model, and the rules for its dynamic evolution.
We saw how avalanches can arise in the system when the slope at any point
exceeds a critical value. In Section 3, we saw the power law scaling in various
observables related to these avalanches, such as their size, temporal length,
and the number of sites affected by them. We also saw the analogues of the
scaling laws, which relate the different scaling exponents.
In Section 4, we tried to understand the connection between self-organized
criticality and a real second order phase transition. We studied the Activated
Random Walker model to see how it becomes equivalent tho the steady state
of one class of sandpile models, known as the Manna sandpile model, at
the critical point. It was seen that self-organized critical behavior can be
studied by looking at absorbing state phase transitions. The mapping also
gave us a new perspective on SOC by showing that there does indeed arise
adjustable parameters in the model, if one has to do away with external
supervision which is implicit in the laws of the dynamic evolution of the
model. Specifically, this had to do with the fact that one has to wait for all
possible avalanches to occur before one adds a new particle to the system.
In Section 5, we looked at how an experimental realization of the sandpile
was achieved. We saw how the initial attempts with real grains of sand failed
due to effects such as inertia and friction. We then saw how an experiment
with rice grains, which reduced the effects of inertia on grains rolling down
the slope, managed to validate the predictions of the sandpile model.
Though questions have been raised about the validity of using the sandpile
model to study the most general manifestations of self-organized criticality, it
remains a widely used tool in various areas of physics as well as other subjects.
In fact, many other similar models have been proposed over the years to
explain the emergence of scale invariance in many real-world systems, and is
an open research subject which has received a lot of attention, especially in
the recent past.
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