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A brief survey is given of the theoretical calculation of the critical behavior of
the shear viscosity at the liquid-gas critical point, as well as experimental attempts
to measure the critical exponent.
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1 Introduction

With regards to the subject of the title, the definition of shear viscosity seems
a good place to start. Loosely, shear viscosity is the propensity of a system to
sustain disturbances in transverse momentum (“shear”). Assuming isotropy and
a classical system, it may calculate via the Kubo–Green relation[4], e.g.,

η =
1

kBTV

∫
∞

0
〈Txy(t)Txy(0)〉dt. (1)

In this equation η is the shear viscosity, kB is the Boltzmann constant, T is the
temperature, V is the system volume, Txy is the flux density through areas normal
to x̂ of momentum pointing in direction ŷ at a given time, and 〈−〉 denotes an
ensemble average.

Along the critical isochore and near the liquid-gas critical point of a fluid, the
shear viscosity exhibits power law behavior[2]

η ∝ ξzη (2)

where ξ is the correlation length, which itself diverges as t−ν.
The critical behavior of viscosity and other transport coefficients is less straight-

forward than their thermodynamic counterparts, but the phenomenon is no less
important. According to Das and Bhattacharjee (2003)[3], critical exponents come
in two kinds: “large exponents”, i.e., exponents that are of order unity; and “small
exponents”, quantities of fractional order. The latter kind provide opportunities
for more sensitive tests of the theory of critical phenomena. In critical dynamics,
the shear viscosity exponent zη falls into the latter class. This is accordingly why
the critical behavior of the shear viscosity at the liquid-gas critical point has re-
ceived both theoretical and experimental attention well into the 21st century and
decades past their heyday.

Viscosity at a liquid-gas transition might seem an overly tame topic for a term
paper for a subject whose central theme is so (I regret the pun) universal. A
great number of journal articles, both theoretical and experimental, claim critical
or “fat-tailed” behaviour in a multitude of unsual and exotic systems. However,
when searching for a suitable topic, I found that a large number of theoretical
papers lacked the data to justify the conclusions; conversely, a large number
of experimental papers lacked the phenomenology to gird their claims. I thus
elected to focus on a more traditional condensed matter system. I like transport
phenomena, so I wanted to study a transport coefficient, but I was tired of studying
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electron transport, so I went with a classical liquid–gas transition and viscosity
instead.

In spite of the amenability to contemporary theoretical and experimental tech-
niques, however, it appears that the study of this particular phenomenon has
reached a mature phase, or at the very least research is stalled. On the theoretical
side, one paper[6] appears to have estimated the contributions to zη from all higher
orders in the loop expansion. I couldn’t find any information on the supposed
successor experiment to the one I described, which was supposed to have been
analysed circa 2008, according to a 2007 review article concerning critical phenom-
ena in microgravity[1]. Use of a search engine quickly clears up the matter, and,
as it turns out, the reason is dramatically macabre: CVX-2 was performed aboard
the final mission of the space shuttle Columbia. The data was recovered from the
debris1 in 2008, but judging from a search on arXiv for a follow-through with this
data, it does not appear to have been touched since.

That absence of recent progress aside, I will summarize field-theoretic renor-
malization group approach to calculating the critical behavior of the shear viscos-
ity. I will explain the demand for an experiment in microgravity, and detail the
setup of the one experiment of this kind, CVX-1. I will compare the theoretical
and experimental values for zη, and speculate as to the underlying reasons for the
discrepancy.

2 Theory

The first order of business is to characterise the problem. The liquid-gas critical
point falls into the O(1) universality class of “Model H”[7], one of several heavily
studied dynamic analogues to the static O(1) φ4 theory[8]. At the current time
there appears to exist a well-understood theoretical prediction for zη, accurate to
2 significant figures and estimating the effects of fluctuations to all orders in the
loop expansion[6]. This value is

zη = 0.0679(7). (3)

The paper in which this value appears[6] briefly recounts the history of this
value, starting from the first raw estimates from nearly four decades ago and
demonstrating the various corrections that must be added to yield a reasonable
value. My discussion starts with an earlier paper[3].

1See, for instance, http://www.foxnews.com/story/0,2933,354799,00.html
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The authors start with Langevin equations for the time evolution of the coarse-
grained order parameter and velocity. These equations are stochastic nonlinear
equations that depend on the Onsager coefficient Γ and the shear velocity η.
Propagation of the order parameter is determined by the susceptibility χ = (k2 +
κ2)−1, whose static part diverges as κ→ 0. These Langevin equations can be solved
self-consistently in terms of the noise term. Doing so amounts to a loop expansion
of the coefficients Γ and η in terms of Wyld diagrams (see Figure). Γ and η are
assumed to have scaling behavior in k as κ → 0. Appling this hypothesis to the
expressions for Γ and η, expanding in small powers of zη, and keeping terms up
to fixed loop order amounts to a self-consistent solution for zη. The leading and
next-to-leading order expressions for zη are

z(1)
η =

8
15π2 ≈ 0.0540 (4a)

z(2)
η =

8
15π2

(
1 +

8
3π2

)
≈ 0.0685. (4b)

The authors argue that, because of the small zη expansion, the contributions
from higher-loop terms are suppressed by a factor of zη for each additional order.

The sequel to this paper[6] evaluates the Wyld diagrammatic method to three-
loop order, introduces self-interactions of the order parameter, and then compares
the result with the ε-expansion method (about d = 4). As it turns out, the ε
expansion leads to gross overestimation of zη, leading to a result z̃η ≈ 0.071. The
authors extrapolate the 1-, 2, and 3-loop results using an “enhancement factor” to
lead to the final result described above.

3 Experiment

Because the critical exponent for the viscosity zη that is expected for a real liquid
is so small, it is very difficult measure in a pure fluid. Far from the critical
point, not much is known about the deviation from critical behavior, and the
analytic background dominates the signal[2]. Close the the critical point, the
effects of gravity become important[1]. The latter flaw is more serious. In a fluid at
hydrostatic equilibrium in a a gravitational field, a pressure gradient develops[1]:

dP
dz

= −ρg (5)
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where P is the pressure gradient, ρ is the mass density of the fluid, and g(z) is
the gravitational accleration. Therefore, a sample subject to gravity does not have
uniform pressure throughout, but instead has some “rounding” in the pressure
proportional to its height.

This problem is magnified further near the critical point. Near the critical point,
theisothermal compressibility of a fluid (essentially the susceptibility) diverges as
tγ. This means that it becomes much more difficult to maintain an isochoric ap-
proach to the critical point. In addition to this, the candidate for the measurement
of the critical exponent, xenon, has a high compressibility to begin with[2].

There are several potential solutions to this problem. First, one might make
a smaller viscometer. However, even the use of a high-Q oscillator only 0.7 mm
in size leads to a minimum t of 3 × 10−5. One might also choose to use a smaller
sample, but then the critical region becomes limited by finite-size effects. In
absence of finite-size effects, it has been shown that the lower limit of the critical
region may be estimated by[1]

tmin =

(
mgh
2kBTc

)(βδ)−1

. (6)

Here h is the height of the sample and m is the mass of a single particle. A similar
figure of merit is the length scale associated with gravity near the critical point[1]:

H0 =
Pc

ρcg
. (7)

For Xe at the Earth’s surface, H0 = 0.525 mm < 0.7 mm[1], and other candidates
have similar values for H0. Thus, there is little choice but to perform experiments
in conditions with much smaller gravitational acceleration.

These and other considerations were addressed in the “Critical Viscosity of
Xenon” (CVX) experiment[1, 2]. CVX was performed on Space Shuttle mission
STS-85 in 1997. Through technological innovation and the use of microgravity,
CVX was able to increase the extent of the critical region by two decades, to
tmin ' 10−7.

I now briefly describe the experimental setup, as detailed in the 1999 paper
on CVX[2]. Basically, the experiment consisted of a viscometer made of a nickel
screen—a torsion oscillator—driven by ac electric fields while immersed in xenon
near the liquid-gas critical point, held at constant temperature via a sensitive ther-
mostat. The viscosity was found by measuring the the response of the oscillator to
the applied electric field, given knowledge of its Q-factor and resonant frequency.
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An accurate measurement of the critical behavior of the viscosity required
sensitive control of the thermodynamic parameters of the system to avoid in-
homogeneities and deviations from criticality that might have spoiled measure-
ments. The density ρ was controlled by filling and sealing the tank with xenon
at a temperature just below Tc. The average density inferred from this process
was ρ/ρc = 0.9985(17). In the most sensitive region, the corresponding relative
shift in viscosity was approximately 10−3. The homogeneity of the temperature
of the sample was maintained using a very sensitive thermostat, one capable of
acheiving homogeneity to a threshold of less than 0.2 µK.

The limiting element to critical behavior was not the thermostat, but viscoelas-
ticity (as described in a review article on microgravity[1]; see figure). The liquid-
gas critical point is characterised by a divergent timescale τ ∝ ξz, where z = zη+3 is
the dynamical critical exponent. When this timescale becomes comparable to the
period of the oscillations, there is a change from theω = 0-type viscous behavior to
the strongly ω-dependent viscoelastic behavior: the fluid “remembers” previous
oscillations and is able to stretch. As a result of this behavior, the function used to
model the data required a viscoelastic contribution[2].

Altogether, about two decades of reliable data were taken (see figure), leading
to the experimental value for zη:

zη = 0.0690(6). (8)

4 Discussion

To the precision available, the theoretical and experimental values are consistent.
If the CVX-2 data were analysed, it might be the case that a more precise theoretical
calculation would be called for. In lieu of this, other measurements of viscosity
have taken place, e.g., of the frequency-dependent bulk viscosity[5], which require
further theoretical analysis.
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Figure 1: First few terms in the Wyld diagrammatic expansions of Γ and η[3].
The straight lines are order parameter fluctuations and the wavy lines are velocity
fluctuations.

Figure 2: η v. t: static limit, along the critical isochore. The deviation from power
law behavior near the critical point is becuase of viscoelastic effects.
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Figure 3: η v. t for several frequencies. Two decaades of data in the scaling region
were taken.
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