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Abstract

This paper is intended to explore localization transitions, phenomena where system states

become localized due to the presence of disorder. The paper will divulge various results and

ideas from the application of traditional phase transitions methods, including the dimensionality

dependence from the renormalization group in the metal-insulator transition and the application

and subsequent modification to Goldstone’s theorem.



1 Introduction

Disorder is a natural topic to investigate if one looks to have grounded theories. All actual

existing physical systems contain disorder to some degree, and for this reason alone its effects

are worth investigating. And investigation turns up that it plays a key role in a number of

phenomena, such as the Kondo problem that determined that how the conductivity of metals

varies with temperature is primarily due to free electrons scattering off magnetic impurities.

High-temperature superconductors have phase shifts that depends on doping level, where it

shifts from a Mott insulator (an insulator with a half-filled band) and disorder can disrupt this

evenness of energy levels to allow propagation. It is responsible for metal-insulator transitions,

where it can interrupt transporting modes enough to prevent long-distance propagation and

destroy conductivity. Disorder is even interesting for cases in which it is an unimportant feature

(or perhaps precisely because of this) as in topological phases. The general problem was spotlit

by Anderson, who examined states hopping about through transfer coefficients and diffusion

processes [4].

Disorder is a difficult topic. By it’s very nature it ruins many symmetries, and in the case

of quantum disorder where disorder is time-independent, there is no sense of equilibrium so we

cannot wait for disorder to ”set” and then proceed with an anlysis where perhaps symmetries

are restored.

What we study here is a specfic effect of disorder: localization. Disorder breaks translational

invariance, and as such it tends to disrupt any free modes (or extended states). One can imagine

a smooth surface now made bumpy, disrupting the propagation of modes that would normally

go by without dissipating. If extended states correspond to free modes, the other option is

localized states, where disorder manages to disrupt propagation enough to confine states. The

question is, how much disorder does it take to cause localization?

The investigation of the topic involves many phase transitions techniques. It has several

properties of traditional phase transitions at least which encouraged the application of ideas

like the renormalization group, critical exponents, an order parameter and goldstone modes (or

lack thereof, as we will see). The transition is characterized by a critical energy Ec at which

localization sets in, instead of the usual phase transition onset at some critical temperature Tc.

A distinction is made by terming this manner of transition a quantum phase transition.

2 Order parameter and critical exponents

Like any phase transition we are interested in some sort of measure of how ordered the system

is, or how much of the broken phase exists. Here, we move from entirely extended states to

introducing localized ones at some critical energy Ec. The logical choice for an order parameter

is the density of states, which measures how many states are extended or localized [1] (discussed

more in the next section). Despite this measure it provides it is not exactly an order parameter,
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as it does not need vanish outside the Goldstone phase. Regardless, we will treat it as one. If

the density of states is an order parameter then

ρ(E) ∼
∣∣∣∣E − EcEc

∣∣∣∣β (2.1)

where (E − Ec)/Ec takes the place of a reduced temperature as a measure of approaching the

critical point. If ρ(E) is not to vanish as E → Ec, then we require the critical exponent β = 0.

We could not have β < 0 as well as the order parameter should certainly not diverge, or else it

is not in any sense an appropriate order parameter.

We can use this to extract a few other relationships. First

α + 2β + γ = 2 (2.2)

means we must have α + γ = 2. There are also

2− α = dν (2.3)

γ = ν(2− η) (2.4)

and combiming these three results gives

ν(d− 2 + η) = 0. (2.5)

Naturally we expect ν 6= 0 or else the localization length would not diverge and we would not

have the transition to extended states. Therefore we get the exact result η = 2− d.

3 Alternative to Goldstone’s theorem

A usual mark of a phase transition is the appearance of a Goldstone boson. These are mass-

less modes associated with the breaking of a continuous symmetry. The determination of the

existence of Goldstone bosons is usually and conveniently made through Ward identities. The

following is the argument created by McKane and Stone, who in their process elegantly demon-

strated a potential violation of the theorem and pointed out many matching features between

localization transitions and conventional phase transitions [1].

To examine localization it makes sense to examine correlators. These objects will inform as

to whether states have long-scale behavior or not. We examine the simplest conceivable system

where the energy eigenstates follow a Schrödinger equation

(−∇2 + V )ψ = Eψ (3.1)

where V is to be a simple white noise potential that follows a Gaussian distribution according
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to

P [V ] ∝ exp

[
− 1

2γ

∫
ddxV 2(x)

]
. (3.2)

The presumption here is that if this system is to exhibit features of universality, the type of

noise and other details are not important.

The retarded correlator must then follow

(−∇2 + V − E − iη)G(x, y;E + iη, V ) = δ(x− y) (3.3)

and has the eigenfunction expansion

G(x, y;E + iη, V ) =
∑
n

ψ∗n(x)ψn(y)

En − (E + iη)
. (3.4)

The density of states is a useful parameter in measuring localization (we will later mention its

function as an ”order parameter” of sorts). We write the total number of states

ρ(E, V )Ld =
∑
n

δ(E − En). (3.5)

This is directly related to the imaginary part of the Green’s function

lim
η→0+

Im

∫
ddxG(x, x;E + iη, V ) = lim

η→0+

∫
ddx

∑
n

ψ∗n(x)ψn(x)
η

(En − E)2 + η2
(3.6)

= π
∑
n

δ(E − En). (3.7)

Hence

ρ(E, V )Ld =
1

π
lim
η→0+

Im

∫
ddxG(x, x;E + iη, V ). (3.8)

Next, disorder-averaging removes position dependence due to the noise V and so the integral

in (3.8) merely gives the volume of the system. Therefore defining disorder-averaged quantities

via

F =

∫
DV P [V ]F [V ] (3.9)

we can write

ρ(E) =
1

π
lim
η→0+

ImG(x, x;E + iη). (3.10)

Individual states for any particular G will extend through the system for some distance

ξ(E), termed the localization length. The localization length characterizes states as extended

or localized if it is infinite or finite, respectively. This length is analagous to the correlation

length of conventional phase transitions. As we approach the critical energy from the localized

phase, we must see the localization length ξ(E) diverge to obtain extended states, just as we
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would analagously see a correlation length diverge approaching the critical point.

One issue is that although G may extend through the system, the average of G will always

be short-ranged. We are essntially considering systems with some random potential V and then

averaging over the lot of systems. We see G become short-ranged due to unmatching random

phases between states with different V copies. To skirt around this complication we can analyze

an object without phase dependence, for example |G(x, y;E + iη)|2. This is an average over

the product of the retarded and advanced Green’s functions. This quantity will be a crucial

part of the Ward identity used for Goldstone’s theorem.

If we examine the long-time limit on our correlators, the only states that should be present

in our system are the localized ones, while the extended ones have gone off to spatial infinity by

now. Hence, our correlator prior to disorder-averaging will depend only upon localized states

as

lim
η→0+

η|G(x, y;E + iη, V )|2 = π
∑
l

δ(E − El)|ψl(x)|2|ψl(y)|2 (3.11)

where the label l marks localized states. Note that η → 0 corresponds to the long-time limit.

Next integrate over all space and disorder average to get

πρl(E) =

∫
ddy lim

η→0+
η|G(x, y;E + iη)|2. (3.12)

We will see that this is the key formula that poses an alternative to Goldstone’s theorem.

We can find a very similar equation for of the density of all states, not just the localized ones.

To do so we need only begin with our already proven relationship to the imaginary part of the

Green’s function. Observing

ImG(x, x;E + iη, V ) =
∑
n

ψ∗n(x)ψn(x)
η

(En − E)2 + η2
(3.13)

= η

∫
ddy

∑
m,n

ψ∗n(x)ψn(y)ψ∗m(x)ψm(y)

(Em − E − iη)(En − E + iη)
(3.14)

= η

∫
ddy|G(x, y;E + iη, V )|2 (3.15)

we can disorder average before taking the long-time limit to obtain

πρ(E) = lim
η→0+

η

∫
ddy|G(x, y;E + iη)|2. (3.16)

All the crucial ingredients are established. Now, we see that the disorder averaging and the

η → 0 limits do not commute. One leaves us with only localized states while the other retains

all of them.
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Notice we subtly wrote down a Ward identity in (3.15). It is

G(x, x;E + iη, V )−G(x, x;E − iη, V ) = 2iη

∫
ddy|G(x, y;E + iη, V )|2 (3.17)

which relates the difference in two correlators through a higher-order one. In field theory terms

this would be comparing the vertex functions for two distinct fields to a higher order vertex

function. If we are in the broken symmetry phase where the density of states is nonzero, we

should find one of two possibilities. Either

lim
η→0+

η

∫
ddy|G(x, y;E + iη)|2 6= 0 (3.18)

or ∫
ddy lim

η→0+
η|G(x, y;E + iη)|2 6= 0. (3.19)

In order to do this we would require |G|2 ∼ η−1. However, this can happen before or after

integration, and this is how Goldstone’s theorem has a chance to be avoided.

So we break down the possibilities as McKane and Stone did:

(1) ρ(E) 6= 0 and |G|2 diverges after integration. By integrating over space we merely get

the correlator corresponding to zero momentum, and so its reciprocal matches to the mass or

self-energy. Because |G|2 ∼ η−1 there are excitaitons with mass proportional to η, which tend to

zero in the limit. Therefore we have massless excitations, i.e. Goldstone bosons. The presence

of Goldstone modes allows for long-range correlations and so this corresponds to the “extended

or conducting phase.”

(2) ρ(E) 6= 0 and |G|2 diverges before integration. Now |G|2 must diverge for all momenta,

not just zero. Therefore there is no necessity for Goldstone bosons. If this is the case the

remaining density of states corresponds to ρl(E) and so there must be localized states. In the

absence of Goldstone bosons long-distance modes are lacking and so this is the localized phase.

(3) ρ(E) = 0 and the Ward identity provides no information. There is no broken symmetry,

no Goldstone modes and no localization.

And so we see the second possiblity is the alternative to Goldstone’s theorem, possible in

the framework thanks to localization. There are a couple of assumptions in this model: there

are no interactions among states, and effects are presumed to be universal so the simplest noise

model should still give us the proper features. A small note: the fact that V follows a Gaussian

distribution was not necessary in this argument, that enters into play in the field theoretic

model where there exist a few more subtleties to this analysis.
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4 Basic scaling argument

There exists a simple argument to determine a dependence of dimensionality on localization.

Consider a d-dimensional system with a hypercubic lattice, which in general contains extended

and localized states. We will analyze the presence of extended versus localized states through

the scaling of the dimensionless conductance g(L) = 2~
e2
G(L) (also known as the “Thouless

number”), which will determine propagation at a length scale L and is our relevant coupling

constant. G(L) is the dimensionful conductance. We follow the scaling argument done by the

“gang of four” [3] with additional guidance from Ref. [5].

We consider scaling L by some multiplicative factor to bL. Then we should have some scaling

law

g(bL) = f(b, g(L)). (4.1)

We can also represent the renormalization through a continuous scaling by the beta function

defined by

β(g(L)) =
d ln g(L)

d lnL
. (4.2)

The sign of the beta function will determine whether we have a conducting or localized state.

If β > 0 then the conductance grows with length scale and we must have a conducting state,

and if β < 0 then the conductance dies off with increasing leangth scale and we must have

localization preventing transport.

There is a simple analysis that presents what form g(L) should take in a state with weak

disorder. The quantity that was considered by Licciardello and Thouless [2] was g(L) = ∆E
dE/dN

.

Here ∆E represents the geometric mean of the fluctuations in energy levels due to replacing

periodic boundary conditions on the lattice with antiperiodic boundary conditions. The reason

for this is that we wish to understand the effects of the boundary conditions. Extended states

should be heavily subject to this change, while localized states should be more or less indepen-

dent of it. In seeing what corresponds to the extended states we can ascertain things about

the conductance as those are the states that contribute to it. The other factor, dE/dN is the

mean spacing of energy levels.

What we find is in the region where conductance is large

g(L) =
2~
e2
σLd−2 (4.3)

and hence we have the asymptotic limit

lim
g→∞

β(g) = d− 2. (4.4)

The power of d−2 basically comes from a ratio of the system size (Ld) to the diffusion constant

(∼ L2). This corresponds to the classical limit where simple diffusion of electrons is meant to
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Here is a plot of β vs. ln g. We can see the smooth connection between the two asymptotic limits. The
dots represent the linear expansion around the critical point. This figure is courtesy of Ref. [3].

account for conductivity.

The opposite scenario is when we have small conductance due to presence of localization,

then we expect exponentially decaying correlations like

g(L) = gae
−αL. (4.5)

Now in this region we have

β(g) = ln
g

ga
(4.6)

and by assumption we must have β < 0. It is assumed that these two regions of small and large

conductance will connect smoothly under the scaling. This simple argument poses the idea that

even for weak disorder there will be no long-range transport in either d = 1 or 2 dimensions,

because for finite conductance we always have β < 0. When we move to d ≥ 3 now we can have

β > 0 and there exists some critical amount of disorder to cause localization. Intuitively, the

dimensional dependence on disorder is not surprising. In higher dimensions there exist many

more options for free modes to avoid stumbling blocks in their paths.

The metal-insulator transition will occur at the point β = 0 which occurs for some critical

coupling gc. Let’s expand in this region. We observe a linearized renormalization formula

β(g) =
g − gc
νgc

(4.7)

where ν is some necessarily positive number that gives the slope in this expansion (a simple
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visual is provided by the dotted line in the above figure). Thereby this is an unstable fixed

point, we always flow away from this state with increasing length scale. Following the derivation

in Ref. [5] (4.7) approximately reads

1

gc

dg

d lnL
=
g − gc
νgc

(4.8)

which is easily integrated over the length scales L0 to L to obtain∣∣∣∣ LL0

∣∣∣∣ =

∣∣∣∣ g(L)− gc
g(L0)− gc

∣∣∣∣ν . (4.9)

The convenient length definition

ξ = L0

∣∣∣∣ gc
g(L0)− gc

∣∣∣∣ν (4.10)

allows us to write

g(L) = gc

[
1±

(
L

ξ

)1/ν
]
. (4.11)

The plus or minus corresponds to the conducting phase (+) or the insulating phase (−). We

might associate ξ as the localization length as it diverges at the critical point (and when L = ξ

we have no conductance if we start in the insulating phase, although of course this functional

form should be limited to near the critical point). As was necessary g decreases with increasing

L in the localized phase and increases in the conducting phase.

We can also plug in our result to the usual conductivity formula, using that the bare con-

ductivity is σ = g/Ld−2 then

σ ∼ ξ2−d (4.12)

or in the manner the gang of four expressed it

σ ∼
∣∣∣∣E − EcEc

∣∣∣∣(d−2)ν

, (4.13)

which will continuously tend to zero as the critical point is approached.

This model is a very famous scaling argument, particularly so it seems that the colloquial

name the “gang of four” was given to the original creators. There are numerous materials that

follow this sort of conductivity scaling and whose critical exponent has been measured. The

exponent s = (d − 2)ν has been measured for such materials as Ge:Sb (germanium crystals

doped with antimony) [8]. The exponents observed depended on the doping level, and were

observed for Ge:Sb to vary from s = 0.55 without doping to s ≈ 1 at around 20% doping.

It is generally observed that the exponent s varies from 1/2 to 1 [5]. This demonstrates a

sharper decrease in conductivity as the critical point is approached for the higher doped cases,

as we might logically believe as the higher doped case should correspond to more disorder and
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stronger localization.

However, the scaling analysis here is actually a little näıve. It seems that weak disorder

invariably leads to localization in one and two dimensions, but there are known examples of

exceptions where a disordered one-dimensional system can have extended states. There are

several assumptions: The system exhibits a classical conductivity form on a mascroscopic scale,

determined by electron diffusion. The propagating modes need not be electrons however; in

fact, localization can be avoided in a thin-film insulator-superconductor transition, where the

electrons are localized but Cooper pairs are able to propagate [5]. This is a disordered two-

dimensional conducting (superconducting even) state. This is a result demonstrated experi-

mentally such as in Ref. [7], where applying a magnetic field in “atomically disordered α-InOx”

films results in such an insulator-superconductor transition.

A theoretical example of dodging the scaling law’s implications is the random-dimer model

[6]. Consider a one-dimensional lattice, where all the sites are identical of type a. Then,

randomly, sites will be disordered which we can represent by calling such sites b. The dimer

model puts a restriction on how disorder is added to the system: never is a single impurity

placed, but instead impurities are placed adjacently and the impurity pair (b-b) is what is to

be placed randomly. What happens is that at resonance each dimer only causes a phase shift

in a propagating mode, instead of causing its dissipation, and we can have extended states. To

paraphrase Phillips [5], this example leads to an insight that localization at certain energies can

be avoided if the disorder contains a plane of symmetry.

5 Summary

A number of conventional phase transitions methodologies have been examined in the context

of localization transitions. We have shown the concept of an order parameter and critical ex-

ponents with some rough examination near the critical point, the alternative to Goldstone’s

theorem due to the possiblity of localized states, and a simple renormalization procedure that

indicated features to a class of materials following a metal-insulator transition and its depen-

dence on dimensionality.
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