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Abstract: In the real world the systems are composed of networks which

are coupled together. The analytic works studying the robustness of a system

of interdependent and interconnected networks under failures or attacks are

reviewed. Through the generating formalism for percolation process, in spe-

cific analytic models, the final fraction of functional nodes in the networks is

found to have unusual transition between first and second order phase tran-

sitions as a function of the number of interdependent networks, the initial

fraction of the remaining nodes and the dependency of couplings between

interacting networks.
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1 Introduction

Complex networks are usually used to describe the interacting behaviors of

multi-agent systems in social science, bology and technological communica-

tion. Studies on the statistical properties of complex networks with different

structures, or topologies, and distribution of functionality of elements are

widely applied in these fields, such as the Internet, the spread of epidemic

disease, the traffic networks, protein-protein interactions and polymer net-

works [3, 7].

The first model of networks was proposed by Erdös and Rènyi (ER) [13]as

the standard random graph theory. In their model each pair of elements is

randomly connected with the same probability, and thus the distribution of

the edges, or links to the neighbors, of nodes becomes Poissonian. While

in real world, connectivity between each element could be various. In fact,

studies showed that the standard random graph theory does not accurately

predicted the real networks, but it is still a simple model that captures the

properties of the performance of the real networks [2]. Particularly, random

graph models with certain distributions can be exactly solvable and are found

properly describe the behaviors of networks [2, 8]. It is found that many real

networks, such as the Internet and social networks, can be approximated well

if the distribution of degrees of nodes follows a power law, which are so-called

scale-free networks [3, 7].

1.1 Stability of networks and the emergence of giant

component

When networks form, one of the essential questions is their stability. The

stability, or the robustness, of the network is described by the permeability of

the network. When certain nodes of the network face failures, the transmis-

sion of failures changes the symmetry of the functionality of the network, and

a network can be separated into pieces of clusters consist of several connected
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nodes. After steps of transmission, or the cascading of failures, the largest

cluster emerges. Conventionally, the transitivity of one node is assumed to

be blocked out (isolated) if it is not connected to the largest cluster. The

largest cluster of the network is usually called the giant component, which is

one of the characteristic statistical properties of networks.

2 Percolation model to approach the resilience

of interacting networks

The random graph model leads to a critical probability where the giant com-

ponent emerges [7, 8]. Above the critical probability, the giant component

exists and the function of the network works, while below the critical transi-

tivity the network turns into pieces of small, isolated clusters and the network

shuts down. This is analogous to behaviors across the critical probability, or

the percolation threshold, for the percolation transition, and the giant com-

ponent in the random graph model is similar as the percolating cluster over

the system. Therefore, the percolation language is usually applied to study

the robustness of networks, where the critical transitivity can be considered

as the fraction of the normally functional elements, p, under attacks. The

critical value of p is regarded as the measure of robustness, and the size of

the giant cluster is the order parameter. For less pc, the network is easier to

be prevalent and thus is less fragile.

The standard percolation process undergoes a second order phase transition[7,

2], where the giant cluster varies continuously, and sharply if the size of the

system is infinite, with the transitivity p. This indicates that the functional

fragment of elements can be extremely small, comparing to the network size,

as approaching the threshold.
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2.1 Interactions within and between networks

In the percolation model, the elements are connected together and the tran-

sitivity of a network is decided by those connective links. Nevertheless, in

real world, elements in the networks can be connected and also depend on

the functionality of each other which may not be connected together, i.e. not

necessary to be local effects [1, 3, 4, 5, 6, 9, 11, 12, 10]. The elements func-

tionally depending on the each other form the dependent groups (clusters) in

a network. When an element fails, its connected links to the other elements

are destroyed. Also, the other elements in the same dependence group of

that node will fail but are still connected to some other nodes. For exam-

ple, for a market network composed of different stores, if a store shuts down

the other stores having business with it are affected, but the other stores of

the same company as that store will also seriously influenced since they are

highly dependent. When it comes to different networks coupled together,

nodes between networks can also be bonded connectively and dependently.

Consider an airport network and a railway network, where airports are con-

nected to other railway stations. If one airport fails due to some accident

or attack, the connections of the railway stations connected to that airport

are also blocked, but if the airport traffic is broken, the railway traffic is also

diabled.

2.2 Generating function formalism for the calculation

of the giant component

A systematic way to discuss both connective and dependent properties is to

consider percolation process with dependence links to other elements in the

system [1, 3, 4, 5, 6, 9, 11, 12, 10, 8]. The percolation process can be ana-

lytically described by the generating function formalism. First we consider

a single network. The formalism can also applied to a system composed of

many networks. By introducing the generating function of the degree distri-
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bution,

G(x) =
∞∑
k=0

P (k)xk

where P (k) is the probability of one node with k outgoing links, i.e. with

a degree k, the average degree of the nodes in the networks, 〈k〉, can be

described as G′(1). Similarly, after reaching a node with a degree k, there

are k − 1 outgoing links to next other nodes, and the probability of another

node connected to the first node is kP (k)/〈k〉. Then the new generating

function describing this connectivity process, or branching process, can be

expressed as

G1(x) =
∞∑
k=0

P (k)kxk−1/〈k〉 = G′(x)/G′(1)

To study the cascading failure process, now suppose the probability of any

link which is not connected to the giant component is f. If a fraction 1 −
p of nodes in the network is removed or fails, for an arbitrary node, the

probability to connect to the giant component is p(1−f) and the probability

to disconnect to the giant component is thus 1 − p(1 − f). This can also

be described by the branching generating function, G1(f), which is just the

probability that a node with k − 1 out edges that is not connected to the

giant component. Therefore, the self-consistent equation f = G1(f) can be

solved. Then the probability that a node is connected to the giant component

is g = 1−G(1− p(1− f)), and the giant component after this connectivity

process is P = pg.

The dependence process within a network can be characterized by the

dependency groups with a probability distribution q(s) of size s, where

s ≥ 1. After a fraction 1 − p of nodes removed, the number of functional

nodes is
∑
q(s)Nps, and the fraction out of the unmoved nodes becomes∑

q(s)Nps−1, where N is the size of the network. Combined the analytic

conditions of connectivity and dependency process, the steady state of the

network can be solved with numeric [10].
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Figure 1: Different dependency groups in networks [10]. The nodes of the

same depenency group have the same color and circled together. The nodes

in the same dependency group crucially depend on each other but are not

necessarily connected together.

Basha et al . [11] studied a single network contains Poisson distributed

connectivity links and dependency links trough the analytic and numerical

approach above. They found if there are only connectivity links between

nodes, a second order phase transition of the size of the giant component

occurs when increasing the fraction of the initial fail nodes, which is similar

as the observed connectivity process in the traditional percolation model.

However, when dependence links exist, they will induce a first order phase

transition instead, indicating a quanlitative, sudden change of states. The

discontinuous evolution of the giant component means that due to depen-

dency links the critical failure fraction which leads to the breakdown of a

network is finite. In fact, the first order transition happens at a lower frac-

tion of initial failures, which means that the dependency interactions make

a network more vulnerable. Moreover, when the sizes of dependency groups

increase, the critical initial fraction of failures decreases and the network
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Figure 2: The cascading process of failures in a single network with both

connectivity and dependency links [12]. The solid bonds are connectivity

links, while the dependency links are characterized by dashed lines. The

red dots are fail nodes. During the connectivity process, or the percolation

process, nodes connected to the initial failures but not connected to the giant

component (the largest cluster) are damaged. Similarly, in the dependency

process, the nodes crucially depend on the fail nodes also fail. Therefore, the

size of the giant component evolves during the cascading process of failures.

becomes less robust. This could be understood by considering different tran-

sitivity rules in percolation processes, such as the explosive percolations.

3 The analytically solvable examples of the

network of networks

In general, the degree distribution, or the structure, and the interactions

of the networks are various, and thus after attacks the evolutions of the

symmetry of distinct networks can change and may lead to different phase

diagrams.
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However, the networks in real like are coupled together. Recently, simple

examples for a system composed of n interacting networks with interdepen-

dent couplings and intraconnected couplings were studied. Applying the

similar percolation theory approach, Gao et al . [1, 3] studied a the system

consist of n ER networks with intraconnected and interdependent links. Par-

ticularly, if there are two networks A and B, the one-to-one interdependency

can be described as a fraction qA of nodes in network A and a fraction qB

of nodes in B. Next, let gA(ψi) and gB(φi) be the fractions of A nodes and

B nodes that are in the giant components after removing fractions 1 − ψi

and 1 − φi of nodes in each network per step i. Therefore, by applying the

generating formalism above, the evolution of the giant components PA
i and

PB
i can be derived during the cascading process. For example,

ψ1 = p, φ1, PA
1 = ψ1gA(ψ1)

φ2 = 1− qB[1− pgA(ψ1)] ...

By applying the distribution of node degrees, which was Possionian in

this study, the final size of the giant components can be get from the stable

condition as n → ∞. The results showed that for a the system consist of n

ER networks, the interdependent couplings between networks can also lead

to a first order phase transition of the giant component as the intradependent

couplings in a single network. The discontinuity of the giant component at a

finite failure fraction indicates the interdependency also decrease the robust-

ness of the networks. The intra- and interdependency could be analogous

to the role of interactions between molecules in the ideal gas. The transi-

tion between first and second order phase transition is similar as the case

in the interacting ideal gas [5]. Interesting results of transitions between

first order and second order transition were also found for full and partial

interdependency in some simple topologies, as described in Fig. (3)[1, 3].

Furthermore, based on the similar generating function formalism, Leicht

et al . [9] studied two Poisson distributed intraconnected network with inter-

connected links. They found the fraction of functional nodes grows as the

interconnectivity increases.
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The above studies showed that interdependency and interconnectivity

of two interacting networks compete with each other. To understand the

competing effect, Hu et al . [6] applied the similar scheme to study two intra-

connected networks but with both interdependent and interconnected links.

They found transitions of first order between second order phase transitions

of the giant components of each network, and interestingly, also a hybrid of

the two kinds of phase transition in Fig. (5) [6].

4 Summary

The stability of the networks can be described by the dynamics of the cascad-

ing process of failures and measured by the size of the giant component. The

cascading process is analogous to the percolation process. In general, there

could be connectivity and dependency couplings between nodes in networks.

How the evolution of the giant component is affected by the interactions

within and between networks can be analytically and numerically solved by

the generating function formalism in the percolation point of view. In par-

ticular cases, intradependency and interdependency were found to reduce

the robustness of the system, while interconnectivity makes the system more

stable. Also, the competing effects between dependency and connectivity

couplings leads to unusual transition between continuous and discontinuous

phase transitions and even a hybrid of them, which indicates the dependency

and connectivity can both cause qualitative change of the symmetry of the

networks. Since the recent studies most focused on Possionian random graph

models, it is interesting to ask what will happen when this scheme is applied

to systems of interacting networks with the arbitrary distribution of node

degrees, especially power law distribution which is common in real world.

Moreover, it is also possible to study the competing behaviors between intra-

and interdependent interactions in a system of coupled networks.
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Figure 3: The fraction of giant components of n interdependent networks

[3]. (a) The giant component of a system of networks with tree-like topology

undergoes second order phase transition when n=1 but first order phase

transition when n is larger than 1. (b) The example for a system of networks

with loop-like topology. There is a transition between fist and second order

phase transition depending on the interdependency q. (c) The example for

a system of random regular ER networks. A transition between fist and

second order phase transition also occurs as a function of m, the number of

interdependent networks.
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Figure 4: A network composed of two networks [6]. Solid lines are connected

bonds and dashed lines are dependent bonds. Each network has intracon-

nected links, interconnected links and interdependent links.
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Figure 5: (a) The giant components of two networks containing interdepen-

dent and inconnected interactions [6] for fixed average intraconnected degree

k = 2 and interconnected degree K = 1 and different interdepency q. There

are three kinds of phase transions: no phase transition, second order and

first order phase transition. (b) A hybrid of first and second order phase

transition happens for qB = 1 and average k = 3.
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