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Abstract

In this paper, we study the thermodynamic phase transition in
one dimensional systems with short range interaction. We begin by
reviewing some famous non-existence result, such as Landau’s argu-
ment and van Hove’s theorem. And we point out that the Perron-
Frobenius theorem is generally used to determine whether there is
phase transition in such kind of system. Then several examples that
Perron-Frobenius theorem doesn’t apply and exhibit phase transi-
tions will be present.
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1 Introduction

One dimensional systems are one of the most important and remarkable re-
search areas in physics. As a matter of fact, it is generally easier to perform ana-
lytical analysis on models in one dimension compared to their higher dimensional
counterparts. The exact one dimensional results often give us deep understanding
about many physical phenomena, and may lead to advances in much broader con-
texts subsequently. For example, one way to derive the scaling laws of the Kondo
problem, which is related to the anomalous behavior of resistivity in metals due to
the scattering of conduction electrons with magnetic impurities, is to prove that it
is equivalent to certain class of one dimensional classical statistical problem, and
solve the statistical mechanics of that problem ([2]).

Despite that people have known a lot about one dimensional systems, they are
still interesting areas and a continuous source of exciting new physics. In this paper,
we will study some phase transitions take place in one dimensional models. Histori-
cally, there are some careless opinions about whether there are true thermodynamic
phase transitions in one dimensional systems with short range interactions, and they
often prevent people from considering 1 D problems correctly. We will also try to
clarify them.

The structure of this paper is that, we will first discuss the generally cited
’van Hove’s theorem’ ([1]) that excludes phase transition in certain class of one
dimensional model, which is further reinforced by Landau’s argument. Then we’ll
present some one dimensional models that do exhibit true thermodynamic phase
transitions, and talk about the conditions for 1 D phase transition to take place.

2 Non-Existence Result

The generally accepted statement that ’1D system with short range interactions
cannot have phase transitions’ in literature is usually called the ’van Hove’s theorem’.
Indeed, most one dimensional systems with short range interaction do not undergo
a phase transition, except maybe at zero or infinite temperature. And the most
common exactly solvable examples of statistical physics such as Ising model, Potts
model, etc, seem to suggest this conclusion.

One of the most famous argument is given by Landau and Lifshitz ([4]). Con-
sider a one dimensional lattice of L sites, each site variable can take two possible
states, either A or B. Let us assume the ordered phases, where all sites take state A
or all sites take sate B, have the lowest energy (just like ferromagnetic spin 1
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model in zero field), and assume a domain wall that divides a region of A phase
from that of B will cost energy of ϵ. Then the free energy is consist of the energy
cost by n domain walls nϵ, and the entropic contribution due to the number or ways
of placing n walls on L sites ≃ nT [ln(n/L)− 1] for 1 << n << L.

F = E − TS = nϵ− nT [ln(n/L)− 1] (1)

Thus to minimize the free energy, the number of domain walls will grow until it
scales as L for any finite temperature. that is to say, the building of a domain wall
is energetically more favorable. More and more domain walls are built and we will
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not observe a state with all spins up (or down). Thus there is no phase transition in
one dimension (for T ̸= 0). Note that this argument relies on a finite energy cost for
domain walls, and short range interactions so that one may ignore the interaction
energy of domain walls.

We can also think of this problem from a dynamical perspective. For a disor-
dered state to become ordered, domain walls must annihilate each other. However
in one dimension system, two domain walls at opposite ends of a domain moving
closer to one another can not reduce the free energy. Therefore there is no effective
force to move the domain walls and eliminate domains. The system would stay in
disordered states. Again, this argument requires a short range interaction so that
one can ignore the energy of interaction of domain walls beyond some finite distance.

As for the finite range of the interactions, the work of Ruelle ([5]) and Dyson ([6])
proved that pair interactions decaying as 1/r2, r being the distance between variables
represent the boundary between models with and without phase transitions.

Mathematically, people use the transfer matrix technique to address the ques-
tion of phase transition in one dimension. For example, for N sites Ising model in
one dimension with periodic boundary conditions, the partition sum can be written
as the trace of a product of N transfer matrices T:

Z = Tr[TN ] =
∑
λ

λN (2)

where λ are eigenvalues of the transfer matrix. If the transfer matrix is finite and
positive, the Perron-Frobenius theorem ensures that the largest eigenvalue λmax is
non-degenerate. Consequently in this system, as we vary some control parameters,
we could expect no phase transitions which are defined rigorously as nonanalyticities
of the free energy F ∼ limN→∞(lnZ)/N = λmax

The frequently cited van Hove’s theorem generally referred to a paper written by
him in 1950 ([8]). That paper considered phase transition in a system of N identical
particles, lying on a segment of length L on positions xi, i = 1, · · · , N, 0 ≤ xi ≤ L.
The potential energy of the system is assumed to be continuous, bounded, and is
given by

V =
N∑

i=1,i<j

U (|xi − xj|) (3)

with

U(ξ) =

{
+∞, if 0 ≤ ξ ≤ d0,

0, if ξ ≥ d0,
(4)

and 0 < d0 < d1. That means the system that van Hove initially considered was of
hard-core segments of diameter d0, that interact only at distances smaller than d1.
He used the transfer matrix technique that we described before, and showed that
the largest eigenvalue is an analytic function and consequently it cannot have phase
transitions.

Hence, we can see that it is crucial to clarify the conditions that the 1D systems
have to satisfy in order for the van Hove’s theorem to be applicable.

First of all, the system has to be made up of identical particles, i.e. it should be
perfectly homogeneous. This is a very strong restriction. It automatically excludes
any aperiodic or disordered models. Actually there is no known theorem excluding
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phase transitions in one dimensional systems with any degree of inhomogeneity.
Periodic systems, however, could be included in the van Hove’s theorem by analyzing
the transfer operator for a unite cell.

Second, there should be no external fields acting on the system, otherwise it will
introduce terms depending on the position of the particles xi alone in the potential
energy. However, in van Hove’s assumption, the potential energy could depend on
relative interparticle distances xi − xj only. Consider one dimensional Ising model,
if we introduce a magnetic field, the system might therefore have phase transitions
at non-zero temperatures.

Last, the system should be consist of hard-core particles, which means it does
not apply to point-like or soft particles.

It was showed later that the second and third restriction can relax in some cases
([1]).

3 Examples of 1D Models with Phase Transition

In this part, we study some examples where there are true thermodynamic
phase transitions despite of their one dimensional character and the range of their
interactions, and thus summarize the conditions for phase transition to happen in
this kind of systems. The first case we consider is the Kittel’s Model.

3.1 Kittel’s Model

The system is proposed by kittel in 1969 as a simple model of KH2PO4 (usually
known as KDP), which exhibits a first-order transition at non zero temperature. It
is in fact a single-end zipper model, and inspired in double-ended zipper models of
polypeptide or DNA molecules. Consider a zipper of N links that can be opened only
from one end. The energy required to open link n+1 is ϵ if all the preceding links
1,2,...n are open, and is infinite if not all the preceding links are open. The zipper
is said to be open when the first N-1 links are open, as link N cannot be opened.
Further, we assume that each open link can take G kinds of different orientations,
i.e., the open state of a link is G-fold degenerated. As we will see below, if G=1
there is no phase transition still. We will solve Kittel’s model in terms of a transfer
matrix.

The Hamiltonian of this model can be written as

HN = ϵ(1− δs1,0) +
N−1∑
i=2

(ϵ+ V0δsi−1,0)(1− δsi,0) (5)

where si = 0 means that link i is closed, si = 1, 2, · · · , G means that the link is
open in one of the possible G states. Note that Kittel’s constraint on the zipper
corresponds to the choice V0 = ∞, and as Link N in the zipper is always closed, we
have also imposed the boundary condition sN = 0.

The partition function is then be given by

ZN =
∑

config.

exp(−βHN) (6)
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To implement the transfer matrix formalism, we rewrite the partition function as

ZN =
∑

config.

e−βϵ(1−δs1,0)

N−2∏
i=1

e−βϵ(1−δsi+1,0
)
[
1 +

(
e−βV0 − 1

)
δsi,0(1− δsi+1,0)

]
. (7)

Let V0 = ∞, which implies that e−βV0 = 0.
The transfer matrix T = (ts,s′), can therefore be defined as

ts,s′ = e−βϵ(1−δs′,0) [1− δs,0(1− δs′,0)] , (8)

or in matrix form

T =


1 0 · · · 0
1 a · · · a
...

...
...

1 a · · · a

 , (9)

where e ≡ eβϵ. The 0 entries in the first row of T are due to the constraint that link
si+1 cannot be open if link si is closed (si = 1).

We can thus revise the partition function as

ZN = (1 a · · · a)TN−2


1
1
...
1

 . (10)

Matrix T has three different eigenvalues, namely λ1 = Ga, λ2 = 1 and λ3 =
0. The third one is G − 1 fold degenerate. The eigenvectors of the two nonzero
eigenvalues are, respectively

v1 =


0
1
...
1

 ,v2 =


1−Ga

1
...
1

 , (11)

so if we express
1
a
...
a

 =
a(1−Ga)− 1

1−Ga
v1 +

1

1−Ga
v2,


1
1
...
1

 =
−Ga
1−Ga

v1 +
1

1−Ga
v2, (12)

we finally get

ZN =
1− (Ga)N

1−Ga
=

1−
(
Ge−βϵ

)N
1−Ge−βϵ

(13)

or in another way

ZN =
1

1−Ge−βϵ

(
−λN1 + λN2

)
(14)
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The partition function now is expressed as a linear combination of N th powers of
the transfer matrix eigenvalues. In the thermodynamic limit, only the contribution
of the largest eigenvalue retains. Let’s take N → ∞, the free energy is then given
by

f ≡ 1

N
F ≡ − 1

βN
lnLN = − 1

β
ln max(λ1, λ2). (15)

In order to create a nonanalyticity of the free energy and thus phase transition of
the system, as both the eigenvalues are positive, analytic functions of β, we have to
let the two eigenvalues to cross at certain βc. Compare λ1 and λ2, we get that they
cross at a temperature given by βc = lnG/ϵ, or Tc = kBϵ/lnG. Above Tc, λ1 is the
largest eigenvalue; below Tc, λ2 is the largest eigenvalue. At Tc, the derivative of
the free energy is discontinues, indicating the existence of a phase transition. It is
interesting to note that Tc = kBϵ/lnG is finite as long as G > 1. For non-degenerate
case G = 1, the transition takes place at T = ∞, or, in other words, there is no
phase transition.
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Figure 1: Largest eigenvalue of the transfer matrix for Kittel’s
model with G=2 vs inverse temperature, with ϵ = 1. The non-
analyticity takes place at β = 1/ln2

Why there is a phase transition in Kittel’s model? The transfer matrices, made
up from Boltzmann factors, i.e., exponentials, are always strictly positive and conse-
quently, irreducible and analytic in β. According to the Perron-Frobenius theorem,
there cannot be a phase transition under these conditions for any finite β > 0. How-
ever, in this Kittel’s model, we assign an infinite energy to some configurations, thus
some of the elements in the transfer matrix become zeros. This makes the phase
transition to be possible.

However, it should be noted that following this assignment does not necessarily
induce a phase transition in a 1 D system. As we mentioned above, the case where
the open state is non-degenerate doesn’t experience a phase transition at finite
temperature.
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3.2 Chui-Week’s Model

The next example we are going to consider is proposed by Chui and Weeks. In
this model, the transfer matrix has infinite size. The model is given by the following
Hamiltonian

HN = J
N∑
i=1

|hi − hi−1| −K
N∑
i=1

δhi,0. (16)

This is a typical model that describes surface growth. hi stands for the height
above site i of the lattice and is single-valued. Suppose the heights can only take
integer values and that there is an impenetrable substrate, imposing a boundary
condition hi ≥ 0. The first term in the Hamiltonian is the surface tension contribu-
tion to the total energy, and the second one introduces an energy binding the surface
to the substrate. Interestingly, despite that this model appears to take place in two
dimensions, it is essentially a model with one dimensional nature, as the height hi
could equally well represent any other magnitude, not necessarily associated to a
physical dimension.

Easy to see the transfer matrix for the model is

(T)ij ≡ e−βJ |i−j| [1 + (e−βK − 1)δi,0
]
, i, j = 1, 2, . . . . (17)

Here the matrix dimension becomes infinite, due to the fact that the any site of the
lattice can take infinite amount of states (height). However, the matrix is a strictly
positive one, as in this case none of the entries in the matrix is zero.

Let ω ≡ e−βJ , κ ≡ e−βK , then, by considering eigenvectors of the form

vq ≡ (ψ0, cos(q + θ), cos(2q + θ), . . .), (18)

it can be shown that there is a continuous spectrum of eigenvalues,

σ(T) =

[
1− ω

1 + ω
,
1 + ω

1− ω

]
. (19)

In the range of temperatures such that κ > 1/(1− ω), there is an additional eigen-
vector,

v0 ≡ (ψ0, e
−µ, e−2µ, . . .) (20)

with eigenvalue

λ0 =
κ(1− ω2)(κ− 1)

κ(1− ω2)− 1
, (21)

which, when it exists, is the largest eigenvalue. This is another case of eigenvalue
corssing in the transfer matrix, which indicates the existence of a phase transition.
The phase transition temperature Tc, is defined at which κ = 1/(1 − ω). The
physics of this transition is that, for temperatures below Tc, the surface is bound
to the substrate and is macroscopically flat; on the contrary, above Tc, the surface
becomes free and its width is unbounded. This is an example of the so called
roughening (or wetting) transitions.
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However, an interesting thing is that, if the substrate is not impenetrable, the
variable hi is thus not limited to positive integers, this phase transition disappears.
The surface will be flat at all temperatures pinned to the line hi = 0.

We could extend the range of hi to positive real space. In this way, the transfer
matrix will become an integral. Similar case is going to be studied in the next
section.

3.3 Dauxois-Peyrard’s Model

In this part, we want to discuss a model for DNA denatuation. This is a much
more realistic model than the toy model introduced by Kittel and discussed in detail
above. We will refer to it as Dauxois-Peyrard’s model.

Suppose that the DNA molecule is homogeneous. The Hamiltonian is given by

HN =
N∑
i=1

[
1

2
mẏ2n +D

(
e−αyn − 1

)2
+W (yn, yn−1)

]
, (22)

where the variable yn represents the transverse stretching of the hydrogen bonds
connecting the two base pairs at site n of the double helix of DNA. The first term
in the hamiltonian is the kinetic energy, with m being the mass of the base pairs.
The second term is a Morse potential, which stands for the hydrogen bonds between
base pairs as well as the repulsion between phosphate groups and solvent effect. The
last term represents the stacking energy between neighboring base pairs along each
of the two strands. This is an anharmonic potential

W(yn, yn−1) =
K

2

[
1 + ρe−α(yn+yn−1)

]
(yn − yn−1)

2. (23)

Once again, we write down the partition function of the model. As mentioned before,
it is given in the form of an integral transfer operator

Tϕ(y) =

∫ A

−∞
dxexp

[
−β

(
W(y, x) +

1

2
[V(y) +V(x)]

)]
ϕ(x), (24)

where the upper limit in the integral, A, is a cutoff introduced for technical reasons,
but the limit A→ ∞ is well defined.

Our problem now is that it is impossible to use analytical method to find the
exact eigenvalues of the transfer operator for Dauxois-Peyrard model. However,
people did analytical approximation and numerical computation and got compelling
evidence for a phase transition in the anharmonic case.

Their numerical results about the transfer matrix show that its eigenvalue spec-
trum is very similar to that of Chui-Weeks’s model we discussed before. Besides the
band of the continuous spectrum, there is a single eigenvalue appears at a finite
temperature. This result agrees very well with numerical simulations of the model,
showing that above the critical temperature the mean value of yn diverges, i.e. the
two strands separate to a macroscopically large distance. That is to say, the double
strand denaturates. While below the critical temperature the two strands remain
bound.
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More interestingly, the predictions of the model compared very well with exper-
iments on short chains ([7]). A work show the comparison of theoretical calculations
with the experimental melting curves was obtained in 1998. The experiment was
did for three different oligonucleotides, in a 10-mM Na phosphate buffer, 0.1-mM
Na2EDTA and 200-mM NaCl, pH 6.7. One of the oligonucleotides contained 27
base pairs, and the other two had 21 base pairs. In Fig. 2 we show the experimental
and computed melting curves. The Dauxois-Peyrard’s Model we talk about here is
thus a very realistic model, and clearly there is a phase transition in this system
at finite temperature. On one hand, the Morse potential applied external field on
the system; the most important reason, however, is that its transfer matrix is an
integral operators indicating infinite dimensions.

Figure 2: Experimental melting profiles (full lines) and theoretical
results (dashed lines) for the three DNA chains ((c) and (d) are for
the same chain at low and high concentration respectively). Here
ϕ = 1− θ, and θ is the average fraction of bonded base pairs

3.4 discussion

From the previous discussion, it easy to see that we usually use the Perron-
Frobnius theorem to determine whether certain transfer matrix would exhibit cross-
ing of largest eigenvalues and thus phase transition in one dimensional system. In

9



general, there is no transition. However, exceptions happens when the Perron-
Frobenius theorem no longer applies. For example, when the transfer matrix be-
comes reducible, i.e. when there exist components of TN that are zero for all values
of N. This can occur at zero temperature or when some interaction strengths are
set to infinity. Another case when the Perron-Frobenius theorem does not apply is
when the transfer matrix becomes infinite due either to long range interactions or
when the local degree of freedom at each lattice site is infinite. In this paper, we
showed some one dimensional models to exemplify those cases.

Apart from what is mentioned above, from the procedure of solving the Kittel’s
model, we can see that the specific form of partition function is also related to the
choice of boundary conditions of the system. For periodic boundary conditions,
for example, ZN = Tr(T(β)N); while for fixed boundary conditions given by two
vectors f and g, the partition function takes the form ZN = ⟨f,T(β)Ng⟩. Sometimes
boundary conditions could suppress the eigenstates of the maximum eigenvalue as
allowed states for the model and results in unusual phase transition. We will show
this possibility by giving an academic example. Suppose the transfer matrix for a
three state system is of the form

T ≡

 3 1 1
1 b 1
1 1 b

 . (25)

This is a positive, irreducible matrix which, according to Perron-Frobenius theorem,
cannot have a phase transition. The spectrum of this matrix is

σ(T) =

{
b− 1,

1

2

(
4 + b±

√
12− 4b+ b2

)}
. (26)

If the boundary conditions are chosen to be given by a vector orthogonal to the
eigenvector of the maximum eigenvalue, 1

2
(4+ b+

√
12− 4b+ b2), in this particular

case, it can be easily showed that there is a crossing of the second and third eigen-
value at b = 3. Therefore this model has a thermodynamic phase transition even if it
is described by a positive, irreducible matrix, and this kind of phase transition only
occurs for specific boundary conditions. In general, the model will behave in the
usual way. Admittedly, the example we give here is more academic than physical,
as in real systems, both the energy of the first state and the boundary conditions
would be temperature dependent. However, it is possible for this feature to arise in
more realistic systems, and lead to phase transitions.

4 conclusion

In this paper, we talked about the existence of true thermodynamic phase
transitions in one dimensional systems with short range interaction. When the
transfer matrix does not satisfy the condition of Perron-Frobenius theorem, which
requires the matrix to be positive, irreducible, compact, phase transitions can exist.
But this is not a sufficient condition. We studied several one dimensional physical
models to certify this argument. And we also mentioned that even if the Perron-
Frobenius theorem applies, some special boundary conditions may also result in
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phase transitions. In conclusion, it is not easy to reach an ’if and only if’ theorem
about the existence of phase transition in one dimensional systems with short range
interaction. We need to bear in mind that such kind of phase transition does exist,
and we should study a particular problem carefully instead of judging it by careless
generalization.
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