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Abstract

The renormalization group approach of integrating out degrees of freedom succes-

sively has been crucial in understanding the critical phenomena. For bosonic case,

this integration is done over momentum shells in the Wilsonian RG, but things are

more complicated for fermions as their ground state consists of a Fermi surface around

which the integrals are to be performed, as opposed to around a point for the bosonic

case.

In this essay, we study the stability of a nonrelativistic fermionic system to inter-

action within a renormalization group framework, as discussed by R Shankar. The

basic approach of RG here is analogous to that of integrating out on a momentum

shells in a scalar field theory with a φ4 interaction. The application of RG in 2 or 3

dimensions leads to Landau-Fermi liquid theory, with only relevant operators being

those of BCS type (Cooper pair instability).



1 Introduction

The approach of renormalization group(RG), as developed by Kadanoff and Wilson in early

1970s, has enjoyed wide applicability in the theory of critical fluctuations in statistical me-

chanics, in quantum field theory and in condensed matter physics. The basic idea of RG

involving rescaling the system and looking for the corresponding change in coupling con-

stants has spawned a plethora of tools and techniques to compute the RG transformations

for various systems.

In condensed matter physics, we deal with a unique system: a collection of large number

of fermions (N ∼ 1023) on a lattice. For such a system, even at T = 0 there exists an energy

level called the Fermi level upto which the energy levels are filled, owing to the Pauli’s

exclusion principle. Applying the ideas of renormalization there would involve integrating

out high energy excitations with respect to the Fermi sea while keeping it intact. In

this essay we demonstrate such calculations and the issues involved, as first done by R

Shankar [1] back in early 1990s.

Physically, the verdict of interactions on Fermi sea was primarily deduced by the phe-

nomenological Landau-Fermi liquid theory, which was initially proposed by Lev Landau to

explain the behavior of 3He at low temperatures. The theory is valid for repulsive inter-

actions, while for attractive interactions, as T → 0, we get the superconducting state as

explained by the BCS theory. The renormalization group places the Fermi liquid theory

on a solid footing by explaining how the interactions scale and hence affect the behavior

of the system of interacting fermions. In this essay, we will demonstrate the Fermi liquid

fixed point as well as the superconducting instability as obtained by RG calculations at

T = 0.

The rest of this essay is organized as follows: §2 introduces the basic concepts relevant

for the calculation, §3 describes the basic issues involved in RG for fermions, §4 goes over

the RG calculation up to one loop in d = 1 and §5 continues that calculation for d > 1.

2 Setting the Stage

In this section, we set the stage for the forthcoming RG calculations for fermions. We

discuss momentum shell RG, path integrals for fermions using Grassmann variables and

basic idea of Landau-Fermi liquid theory.

2.1 Momentum Shell RG

The momentum shell RG consists of integrating out degrees of freedom corresponding to

high energy modes and then rescaling momenta and fields accordingly [1,3]. The following

schematic outline of procedure that will be used later for actual calculations in §4. To

this end, consider an action S{φ} which is a function of some field φ, which we will as-

sume to be bosonic for simplicity. The calculation of RG transformation consists of 3 steps:
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1. Mode elimination: The first step is to split the fields (in momentum space) among

fast and slow modes, φ<(k) and φ>(k), respectively, w.r.t. a sharp cutoff.

φ<(k) = φ(k) ; 0 < k < Λ/s

φ>(k) = φ(k) ; Λ/s < k < Λ

where s = et > 1 ⇒ t > 0 defines the momentum shell which we are integrating out.

Substituting this in action will lead to

S{φ(k)} = S<{φ<(k)}+ S>{φ>(k)}+ SI{φ<(k), φ>(k)}

where the last term mixes the modes at low and high momenta. Integrating out fast modes

and using cluster expansion results in a Wilsonian effective action of the form [1,3]

S ′< = S< + 〈SI〉+
1

2

[〈
S2
I

〉
− 〈SI〉2

]
+ . . .

2. Rescaling momenta: To compare S ′ with S, we want the new field theory to be

defined with a cutoff Λ (and not Λ/s). Hence, we rescale all momenta in the new action

as k → k′ = sk.

3. Rescaling fields: Finally, the new action S ′< can such that the new coupling constants

are simply scaled versions of the old ones. Hence, we choose one term (generally the kinetic

term) whose coefficient we want to keep fixed and then see the variation of other coupling

constants w.r.t. that one. We can rescale the fields accordingly to get sensible coupling

constants.

These steps constitute one iteration of the RG transformation. The final result is

a perturbative calculation of the renormalized parameters as a function of the original

parameters and s, the renormalization scale. Once we have these RG transforms, we can

compute the β-function and the RG fixed points(writing s = 1+t , t� 1 and differentiating

w.r.t. t), thereby calculating the flows and understanding the phase diagram of the system.

2.2 Fermionic path integrals

As the fermionic operators anticommute, we need anticommuting fields to represent them.

To this end, we define Grassmann numbers ψ and ψ̄, which anticommute amongst them-

selves as well as with fermionic fields. Clearly, we need a negative sign whenever two

Grassmann fields are exchanged, but no extra sign when pairs of them are moved around.

Using these fields, the path integral is defined as

Z =

∫
[dψ̄dψ]eS0 , S0 =

∫
ddr

∫ β

0

dτψ̄(r, τ) (∂τ −H(r))ψ(r, τ) (1)

For zero temperature calculations, β →∞. Also, it’s convenient to transform the fields to

the Fourier (K, ω) domain, leading to an action

S0 =

∫
ddK

(2π)d

∫ ∞
−∞

dω

2π
ψ̄(K, ω) (iω −H(K))ψ(K, ω) (2)

This is the form of action that we will use in the subsequent sections.
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2.3 Landau-Fermi liquid theory

The basic claim of the Landau-Fermi liquid theory is that as we adiabatically turn on

repulsive interactions between fermions in a fermi gas, the excitations for the interacting

system are in one-to-one correspondence with those of the noninteracting system [4]. The

excitations in the interacting theory are fermionic quasiparticles, with a renormalized mass

m∗ (which is generally taken as a phenomenological parameter) and a finite lifetime which

diverges as one approaches the Fermi level. Hence, if one only cares about the excitations

close to the Fermi level, then the claim is that the system with repulsive interactions

behaves identical to a noninteracting system with a renormalized mass(m→ m∗).

3 RG for fermions : Central issues

Consider a bunch of spinless fermions on a lattice, a system (assuming spin to be irrelevant,

which is true if the spin degeneracy is not lifted) quite typical in condensed matter physics.

The ground state will have one-particle states occupied upto certain energy µ, the Fermi

energy, which corresponds to the Fermi surface defined for E(K) = µ. This noninteracting

ground state has gapless excitations – electrons can be excited to levels arbitrarily close to

the Fermi level.

The basic problem is to understand if that stays true when we turn on the interactions

(or if the system develops a gap instead). Landau Fermi liquid theory, as described earlier,

phenomenologically claims that there should be no gap for any repulsive interaction. To

understand why that might be true, we can seek a solution using RG by looking for relevant

operators near the noninteracting fixed point : if there are any such operators, the system

will flow away from the gapless state and will develop a gap.

To construct a RG transformation in this case, we need to measure energies w.r.t the

Fermi level and integrate out the high energy excitations. In terms of K, momenta measured

from the origin, these states will lie in two shells, one outside and one inside the Fermi

surface, with radii KF±Λ. Also, even when we are done integrating out high energy modes,

unlike the bosonic case, we should still be left with scatterings with momentum transfer

of order 2KF , pertaining to fermions scattering on the Fermi surface. Hence, one needs

to integrate out only those momenta which exceed Λ from the Fermi surface in the radial

directions, while keeping intact the momenta in the angular directions. This is the central

issue which is addressed in this essay.

4 RG in d = 1

We start with the d = 1 (1 spatial dimension) case for fermions as it is particularly analogous

to the bosonic case as the Fermi surface in d = 1 consists of just two points KF = ±π/2.

In this section we will construct RG flows for the fermionic action based on the procedure

outlined in §2.2, to serve as a template for the more complicated calculations for d > 1.
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4.1 Hamiltonian and basic considerations

The Hamiltonian on a lattice with nearest neighbor repulsion is

H = −1

2

∑
n

ψ†(n+ 1)ψ(n) + U0

∑
n

(n(i)− 1

2
)(n(i+ 1)− 1

2
) + h.c. (3)

where n = ψ†ψ is the number operator at each site. In this Hamiltonian, the chemical

potential is µ = U0, which maintains half filling. Now, for U0 the system is completely

delocalized owing to the hopping term, while for U0 → ∞, the system develops a charge

density wave(CDW) order with alternate sites occupied as it prefers alternating n = 0 and

n = 1 sites to minimize the interaction term. The former is a gapless state, but the latter

(CDW) is gapped as it costs a finite energy to occupy an empty site.

The central question is whether a CDW order develops for any value of U0 > 0. Mean

field theory tells is that it is so, that the system develops a gap for any positive value of

U0 given by an equation analogous to the superconducting gap equation

1 = U0

∫ π

0

dK

π

1√
E2(K) + ∆2U2

0

⇒ ∆ ∼ Λ

U0

e−π/2U0 ; Λ ≡ cutoff

But an exact solution of this model by Yang tells us that there is no CDW order until

U0 ∼ 1. Evidently the mean field theory breaks down in this case and we can’t ignore

fluctuations here. We now perform RG calculations on this model to see if we can get any

better results. To this end, we Fourier transform ψ(i) and expand around the Fermi level

KF = π/2 as E(K) = cos(K) = cos(π/2 + k) ≈ k. Here, k (or k for d > 1) is measured

from the Fermi level as opposed to K (or K for d > 1) measured from the origin, a notation

that we will follow throughout this essay.

4.2 RG calculation

The free Hamiltonian, expanded in the vicinity of Fermi level is

H0 =
∑
i

∫ Λ

−Λ

dk

2π
ψ†i (k) k ψi(k) ; k = K −KF , i = L,R (4)

for which the path integral becomes (§2.2)

Z0 =

∫ ∏
i=L,R

∏
|k|<Λ

dψ̄i(ω, k)dψi(ω, k)eS0(ψ,ψ̄) (5)

with

S0 =
∑
i=L,R

∫ Λ

−Λ

dk

2π

∫ ∞
−∞

dω

2π
ψ̄i(ω, k)(iω − k)ψi(ω, k) (6)

In the first step of RG, we want to integrate out all degrees of freedom in the shell

Λ/s ≤ |k| ≤ Λ , s > 1 which corresponds to two regions Λ/s ≤ k ≤ Λ and −Λ ≤ k ≤ −Λ/s.

For the free action S0, integrating out ψ> gives a constant as there is no SI(ψ<, ψ>)

term mixing the slow and fast modes. Ignoring that constant addition to the new action,
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S ′<(ψ̄, ψ) = S(ψ̄, ψ)|Λ→Λ/s. Now we rescale the frequency and momenta (step 2, §2.1) as

k′ = sk, ω′ = sω to take the cutoff back to Λ, resulting in

S ′<(ψ̄, ψ) = s3
∑
i=L,R

∫ Λ

−Λ

dk′

2π

∫ ∞
−∞

dω′

2π
ψ̄i(ω

′/s, k′/s)(iω′ − k′)ψi(ω′/s, k′/s) (7)

We can now redefine the fields (step 3, §2.1) as

ψi(ω
′/s, k′/s) = s−3/2ψ′i(ω

′, k′) , ψ̄i(ω
′/s, k′/s) = s−3/2ψ̄′i(ω

′, k′)

which results in

S ′(ψ̄′, ψ′) =
∑
i=L,R

∫ Λ

−Λ

dk′

2π

∫ ∞
−∞

dω′

2π
ψ̄′i(ω

′, k′)(iω′ − k′)ψ′i(ω′, k′) = S(ψ̄′, ψ′) (8)

Hence, the free action we started off with is the Gaussian fixed point of this system. We

will compute the relevance/irrelevance of operators with respect to this fixed point.

Quadratic perturbations: For any quadratic perturbation of the form

δS2 =
∑
i=L,R

∫ Λ

−Λ

dk

2π

∫ ∞
−∞

dω

2π
ψ̄i(ω, k)µi(ω, k)ψi(ω, k) (9)

the renormalization proceeds exactly as the case of the free action. On rescaling the mo-

menta and the fields, we find that

µ′i(ω
′, k′) = sµi(ω

′/s, k′/s) (10)

The simplest way to see this is to notice the fact that µ(ω, k) simply replaces (iω−k) in the

free action S0, which spits out a factor of s on rescaling. Hence, for consistency, µ should

do the same. Expanding both sides of the scaling relation for µ (eqn 10) in powers of k, ω

(and ignoring the left/right index i) give

µ(ω, k) = µ00 + µ10iω + µ01k + · · ·+ µmn(iω)mkn + . . .

which leads to the scaling for coefficients

µ′00 = sµ00 , µ′10 = µ10 , µ′01 = µ01 , µ′20 = s−1µ20 etc. (11)

Hence, µ00 is relevant (increases with s), µ10 and µ01 are marginal and all higher couplings

are irrelevant, as they scale as s−1 or smaller powers of s.

Now the constant coupling µ00 in (µ00ψ̄ψ term) corresponds to a change in the chemical

potential which is used to define the Fermi level in the first place. The Fermi level is defined

as the the energy where E(K) = µ; any µ00 should be absorbed in the definition of the

Fermi level. Hence, at tree level, µ00 = 0. (We will see that there are one-loop correc-

tions from interactions.) As for the other two terms, they simply rescale the coefficients in
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the terms we already have in the free action, and therefore do not count for any interac-

tion. Hence, the quadratic perturbation doesn’t give us anything new under RG transform.

Quartic interaction: Consider general quartic interactions of the form

δS4 =
1

2!2!

∫
Kω

ψ̄(4)ψ̄(3)ψ(2)ψ(1)u(4321) ; ψ(i) = ψ(ωi, Ki) (12)

where the integration measure is∫
Kω

=

[
4∏
i=1

∫ π

−π

dKi

2π

∫ ∞
−∞

dωi
2π

]
2πδ̄(K1 +K2 −K3 −K4)2πδ(ω1 + ω2 − ω3 − ω4)

where δ̄(K) refers to a delta function modulo 2π to account for the umklapp processes. The

coupling function u(4321) stands for ui4i3i2i1(ωi, ki), where the in’s label the sector L,R of

the nth fermion. Here, the momenta Ki’s are measured from the origin and not from the

Fermi level. In this action, indices 1 and 2 correspond to incoming particles and 3 and 4

to outgoing ones. The coupling function u is supposed to obey all the symmetries of the

problem. Here, as ψ’s are Grassmann which anticommute, u should also pick up a sign

under exchange of the two incoming or the two outgoing particles, as

u(4321) = −u(3421) = −u(4312) = +u(3412) ∀ k, ω

At tree level contribution which renormalizes u, all ψ’s in δS4 are slow modes and

integrating over fast modes simply amounts to integrating constants, which is again a

constant and can be discarded. In order to scale the momenta, we need to compute the

scaling for delta function. For frequencies, it is simply

δ(ω′1 + ω′2 − ω′3 − ω′4) = sδ(ω′1/s+ ω′2/s− ω′3/s− ω′4/s)

but things are more complicated for the momentum δ̄ function as what we are scaling is

momentum w.r.t the Fermi surface, k, which is defined by the relation

K = εi(KF + k) , i = L,R ; εL = −1, εR = +1

which when substituted in δ̄ gives

δ̄(K1 +K2 −K3 −K4) = δ̄(KF

∑
i

εi +
∑
i

εiki) = δ̄(
∑
i

εiki)

Now, conservation of momentum demands that the only interactions allowed are of type

LL,RR→ LL,RR and LR→ RL. This is because an odd number of R’s (and hence L’s)

would imply momentum imbalance of order KF . Restricting to these interactions gives∑
i εi = 0,±4 ⇒ KF

∑
i εi = 0,±2π. Hence the first term drops out of the periodic delta

function and everything depends only on k’s, leading to

δ̄(k′1 + k′2 − k′3 − k′4) = sδ̄(k′1/s+ k′2/s− k′3/s− k′4/s)
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The individual measures simply transform to dk = dk′/s, where dk = εidK and
∏

i εi = 1,

as the εL = −1’s always come in pairs. Hence the total integration measure transforms by

a factor of (s−2)4s2 = s−6. Scaling the fields as ψ = s−3/2ψ′ leads to

u′i4i3i2i1(ω
′
i, k
′
i) = ui4i3i2i1(ω

′
i/s, k

′
i/s) (13)

Expanding in Taylor series as in the quadratic case, we can see that all couplings except

the constant term is irrelevant. The marginal term results in

u0 = uLRLR = uRLRL = −uRLLR = −uLRRL (14)

Here, only the interactions of form LR→ RL are considered as the others are eliminated by

the requirement of antisymmetry of fermions. This is because as there is no k dependence

here (only the constant term in u(k, ω) counts), this would lead to two fermions being

scattered to the same state, which is forbidden by the Pauli’s exclusion principle. Hence,

the only surviving term is a marginal coupling constant u0 at tree level.

One loop corrections to µ: The only contributing diagram for µ is the tadpole (Fig.

1(a)). We can set both the external momenta k and frequency ω to zero, and assume them

to lie at L. The 1/2!2! factor in the interaction is cancelled by the diagram combinatorics,

leading to

µ′ = s

[
µ− u0

∫
Λ/s<|k|<Λ

dk

2π

∫ ∞
−∞

dω

2π

eiω0+

iω − k

]
(15)

We need a factor of eiω0+ to make the ω integral converge, which now can be performed as

a contour integral. The contour needs to be closed in the upper half plane (ω → i∞) and

there is a pole at ω = −ik. The result is

µ′ = s

[
µ− u0

∫
dΛ

dk

2π
Θ(−k)

]
= s

[
µ− u0

2π

∫ −Λ/s

−Λ

dk

]
= s

[
µ− u0Λ

2π

(
1− 1

s

)]
(16)

The RG flow can be obtained by substituting s = 1+t, expanding to order t and computing

the derivative w.r.t. t

µ′ = (1 + t)

[
µ− u0Λ

2π
t

]
= µ+ t

[
µ− u0Λ

2π

]
⇒ dµ

dt
= µ− u0

2π
(17)

The fixed point is given by µ′ = µ = µ∗. Substituting and solving,

µ∗ = s

[
µ∗ − u∗0Λ

2π

(
1− 1

s

)]
= s

[
µ∗ − u∗0Λ

2π

]
+
u∗0Λ

2π
⇒ µ∗ =

u∗0Λ

2π
(18)

One loop corrections to u0: For this correction, we will need to go over to 〈S2
I 〉 − 〈SI〉

2

term in the cluster expansion, where the second term cancels out all Feynman diagrams

which contain disconnected pieces [3] and we only need to worry about the diagrams which

are completely connected. Now we only need to bother about 3 diagrams (or channels),
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Figure 1: Feynman diagrams for corrections at one loop for (a) µ and (b)-(d) u0. Each vertex consists of 2 L’s and 2 R’s. For

the tadpole, the combinatorial factor is 2× 2 = 4 (2 L’s and 2 R’s) which cancels 2!2! in the coupling constant. For ZS and

ZS’, each vertex is analogus to the tadpole, leading to a factor of (2!2!)2 which is cancelled by the denominator of (u0/2!2!)2.

For BCS, there are only 2 ways to connect legs 5 and 6 (as opposed to 4 in ZS and ZS’), leading to an overall factor of 2(2!)2.

generally labelled as ZS, ZS’ and BCS, as shown in Fig. 1. Let the change in u0 be denoted

by δu0. This change is schematically given by

δu0(4321) =

∫
u(6351)u(4526)G(5)G(6)δ(3 + 6− 1− 5)d5d6 (ZS)

−
∫
u(6451)u(3526)G(5)G(6)δ(6 + 4− 1− 5)d5d6 (ZS’)

− 1

2

∫
u(6521)u(4365)G(5)G(6)δ(5 + 6− 1− 2)d5d6 (BCS) (19)

where the factor of 1/2 in front of the BCS term is from combinatorics, as explained in the

figure caption. The signs are due to fermion exchanges (fermionic Wick’s theorem). For

instance, the L and R are exchanged between 3 and 4 in ZS and ZS’, leading to a relative

minus sign. Here 1-4 stand for the slow modes with (4321) ≡ (LRLR) and 5-6 are the fast

modes which are integrated over, The G’s stand for Green’s functions (propagators) and

d5 stands for dk5dω5 etc. Now the external frequencies and momenta can be set to zero to

perform the integrals.

For ZS, there is no momentum transfer at the vertices, as L → L and R → R, hence

the momentum K is same for G(5) and G(6). On the other hand, for ZS’ and BCS, there

is a momentum transfer of π, as L→ R and R→ L, leading to one of the momenta being

K ′ = K+π. As far as frequencies are concerned, they are same in both legs for ZS and ZS’

but opposite for BCS, owing to the direction of flow as depicted in the diagram. Also we

know that E(−K) = E(K) and E(K ′ = K + π) = −E(K). Using all this, the expression

for δu0 for zero external momenta can be expressed as

δu0(4321) =

∫
dΛ

dK

2π

∫ ∞
−∞

dω

2π

u(KRKR)u(LKLK)

[iω − E(K)][iω − E(K)]
−
∫
dΛ

dK

2π

∫ ∞
−∞

dω

2π

u(K ′LKR)u(RKLK ′)

[iω − E(K)][iω + E(K)]

− 1

2

∫
dΛ

dK

2π

∫ ∞
−∞

dω

2π

u((−K)KLR)u(LR(−K)K)

[iω − E(K)][−iω − E(K)]
(20)
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Now we just need to evaluate this. Again, we can do the ω integral as a contour integral,

where the contour can be closed in either top or bottom plane owing to the 1/ω2 decay of

the argument. The calculations are as follows:

ZS: In this case, the two poles coincide at ω = iE(K). The contour can always be closed

in such a way that it doesn’t include these poles, and hence ZS = 0.

ZS’: In this case, the poles lie at ω = ±iE(K) = ±i|E(K)|. Hence, for any choice of

contour, it encircles one of these poles. Also, if K lies near L, then the coupling constants

are u(K ′LKR) = u(RLLR) = −u0 and u(RKLK ′) = u(RLLR) = −u0. Using the residue

at that pole and the fact that near the Fermi surface, E(K) ≈ |k| ≈ Λ gives

ZS ′ = u2
0

∫
dΛ∈L

dK

2π

1

2|E(k)|
=

u2
0

4πΛ

∫
dΛ∈L

dK =
u2

0

4πΛ
2dΛ =

u2
0

2π

dΛ

Λ

BCS: Similar to ZS’, the poles here lie at ω = ±iE(K) = ±i|E(K)|. But in this case K

is allowed to lie in either L or R, which cancels out the factor of 2 before this term. Also,

there is a overall negative sign compared to ZS’ due to the −iω−E(K) term in BCS. Hence

the final contribution is

BCS = −ZS ′ = −u
2
0

2π

dΛ

Λ

Finally, summing them up,

δu0 = ZS − ZS ′ −BCS = 0− u2
0

2π

dΛ

Λ
+
u2

0

2π

dΛ

Λ
= 0 (21)

Hence, up to one loop order, there is no renormalization of the coupling constant u0.

4.3 Interpreting the results

The final result for RG flows up to one loop are

dµ

dt
= µ− u0

2π
;

du0

dt
= 0 (22)

which leads to a line of fixed points

µ∗ =
u∗0
2π

, u∗0 = arbitrary (23)

Physically, this refers to the fact that we need to make corrections to the Fermi level as we

increase the interaction strength in order to maintain the same density of fermions.

Hence, RG tells us that there is no gap for small values of u0, in agreement with the

exact solution. The exact result is reporduced as we increase the coupling u0 as eventually

the RR → LL umklapp coupling, which is irrelevant at Gaussian fixed point, becomes

relevant and makes the system flow towards CDW fixed point [1].
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5 RG in d > 1

For d > 1, the Fermi surface is actually a d−1 dimensional surface about which we need to

compute the RG transform. This will lead to some new phenomena which are not present

in d = 1. We start off with d = 2, where the Fermi surface is a circle. For the energy, we

would use the free particle spectrum, which corresponds to the lattice spectrum for small

momenta, and write

ε(K) = E(K)− µ =
K2 −K2

F

2m
=
K +KF

2m
(K −KF ) =

KF

m
k = vFk (24)

where K ∼ KF and vF is the Fermi velocity. The free fermion action is

S0 =

∫ ∞
−∞

dω

2π

∫ 2π

0

dθ

2π

∫ Λ

−Λ

dk

2π
ψ̄(ω, θ, k)(iω − vFk)ψ(ω, θ, k) (25)

which is essentially analogous to the d = 1 case, except for the fact that the ψ’s are now

labelled by a continuous θ ∈ [0, 2π) instead of the discrete labels i ∈ {L,R}. The trick to

get this is to write the measure d2K as d2K = KdKdθ = KFdkdθ and absorb the factor

of KF in the fields as ψ →
√
KFψ, ψ̄ →

√
KF ψ̄.

Tree level RG: As this is identical to the d = 1 problem with an extra label θ, the

quadratic interactions calculation proceeds as it was done previously, with the terms either

modifying the chemical potential (µ00) or the existing terms (µ01, µ10). The quartic inter-

actions give qualitatively similar result at tree level, but there is an additional subtlety

involved, which we will now discuss.

In d = 2, as the momenta point anywhere on the Fermi surface, we need an extra term

to make sure that all momenta lie within the shell. Hence, the integration measure becomes∫
Kωθ

=

[
3∏
i=1

∫ ∞
−∞

dωi
2π

∫ 2π

0

dθi
2π

∫ Λ

−Λ

dki
2π

]
Θ(Λ− |k4|) ; k4 = |K4| −KF

where the step function Θ(Λ − |k4|) ensures that after choosing ki, i = 1, 2, 3 arbitratily,

k4 does not lie beyond the shell of thickness Λ. Now, the issue is that under the scaling of

ki’s, there is no simple scaling for Θ(Λ− |k4|) here. In fact,

Θ(Λ− |k4(k1, k2, k3, KF |)→ Θ(Λ− |k′4(k′1, k
′
2, k
′
3, sKF |)

The way out of this is to replace the hard cutoff Θ with a soft exponentially decaying cutoff,

via Θ(Λ − |k4|) → e−|k4|/Λ. Assuming that the direction of Ki is given by Ωi, |k4| can be

written as

k4 = |KF (Ω1 + Ω2 −Ω3) + k1Ω1 + k2Ω2 + k3Ω3| −KF ' KF (|∆| − 1)

where we define ∆ = Ω1 + Ω2 −Ω3 and ignore the ki term as ki � KF . Now, scaling as

in the case of d = 1,

u′(k′, ω′, θ)e−sKF (|∆|−1)/Λ = u(k′/s, ω′/s, θ)e−KF (|∆|−1)/Λ
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leading to

u′(k′, ω′, θ) = u(k′/s, ω′/s, θ)e−KF (|∆|−1)(s−1)/Λ (26)

Now, only those couplings survive for which the exponential prefactor is equal to 1 as

everything else scales to 0. This leads to the condition for marginal operators as

|∆| = |Ω1 + Ω2 −Ω3| = 1 (27)

which in d = 2 has three solutions (|Ωi| = 1 as Ωi’s are unit vectors. Also,
∑

i Ωi = 0)

• Ω1 = Ω3 ⇒ Ω2 = Ω4 : (3,4) slaved to (1,2)

• Ω2 = Ω3 ⇒ Ω1 = Ω4 : (3,4) slaved to (1,2)

• Ω1 = −Ω2 ⇒ Ω3 = −Ω4 : (2,4) slaved to (1,3)

The first two conditions imply that the incoming momenta are individually conserved. The

third case is nontrivial: when the incoming momenta are equal and opposite, the final

momenta can take any pair of values on the Fermi surface which are equal and opposite.

Hence, unlike d = 1, the 4-point coupling is described by two coupling constants:

F (θ12) =F (θ1 − θ2) = u(θ1 = θ3, θ2 = θ4) = −u(θ1 = θ4, θ2 = θ3)

V (θ13) =V (θ1 − θ3) = u(θ1 = θ2, θ3 = θ4) (28)

where F correspond to the first two cases as they are related by an exchange 3 ↔ 4.

Both F and V are rotation invariant. Here, F is symmetric in its argument while V is

antisymmetric, owing to the antisymmetry of fermions.

In d = 3, the analysis proceeds exactly as d = 2, except that we have an additional

angle φ. Hence, at tree level,

F (θ12)→ F (θ12, φ12;34) , V (θ13)→ V (θ13)

where V doesn’t need a φ as it’s rotationally symmetric about the initial direction θ1.

One loop corrections: For µ, as in d = 1, only tadpole diagram contributes and only

F (θ12) is needed as we set both the external legs to zero, hence one of the incoming angles

needs to be same as one of the outgoing ones. The fixed point is

δµ∗ =

∫
dωdkdθ

(2π)3

F (θ − θ′)
iω − v∗k

=

∫ 0

−Λ

dk

2π

∫ 2π

0

dθ′

2π
F (θ − θ′) = − Λ

2π

∫ 2π

0

dθ′

2π
F (θ′) (29)

which is a constant. As for renormalization of the quartic couplings, we again have those

3 Feynman diagrams ZS, ZS’ and BCS, summing up to

δF (4321) =

∫
dΛ

dK

2π

∫ ∞
−∞

dω

2π

∫ 2π

0

dθ

2π

u(K +Q, 3, K, 1)u(4, K, 2, K +Q)

[iω − E(K)][iω − E(K +Q)]

−
∫
dΛ

dK

2π

∫ ∞
−∞

dω

2π

∫ 2π

0

dθ

2π

u(K +Q′, 4, K, 1)u(3, K, 2, K +Q′)

[iω − E(K)][iω + E(K +Q′)]

− 1

2

∫
dΛ

dK

2π

∫ ∞
−∞

dω

2π

∫ 2π

0

dθ

2π

u(P −K,K, 2, 1)u(4, 3, P −K,K)

[iω − E(K)][−iω − E(P −K)]
(30)
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where Q = K3 −K1, Q′ = K4 −K1 and P = K1 + K2 in the ZS, ZS’ and BCS diagrams,

respectively. It is implicit that the momenta are all in dΛ. Now, we need to choose the

variables in u()’s such that we get F or V interactions. As far as F is concerned, all three

diagrams vanish. The vanishing of ZS is analogus to the d = 1 case and ZS’ here is same

as ZS. For BCS, requiring that both K and P −K lie in a shell dΛ leads to contribution

of order dΛ2 ≡ 0 at this order.

For V , the ZS and ZS’ diagrams vanish again (as for F ), but BCS contributes as

dV (θ13)

dt
= − 1

8π2

∫ 2π

0

dθ

2π
V (θ1 − θ)V (θ − θ3) (31)

Switching over to Fourier space for V (θ),

Vn =

∫ 2π

0

dθ

2π
einθV (θ)⇒ dVn

dt
= −V

2
n

4π
(32)

Hence, this coupling is irrelevant for Vn > 0 (repulsive interaction) and relevant for Vn < 0

(attractive interaction). Similar expressions are obtained for d = 3. This is exactly what we

expect from the Landau-Fermi liquid theory: Any repulsive interaction scales away and we

flow back to the noninteracting fixed point, while an attractive interaction, however small,

leads to the system flowing away from the Gaussian fixed point. This is the superconducting

instability, which leads to opening up of a gap at the Fermi surface.

To summarize, RG tells us that in d > 1, a system with repulsive interactions is identical

to a noninteracting system with renormalized parameters (Landau-Fermi liquid theory)

while a system with attractive interactions eventually opens up a gap at the Fermi level

(superconducting instability).

6 Conclusion

This essay demonstrates the renormalization group transformation calculation for fermions

about a Fermi surface. In d = 1, RG gives the result in harmony with the exact solution

and identifies the problem with mean field theory. For d > 1, we deduce the Landau-Fermi

liquid theory for any repulsive interaction as well as obtain the superconducting instability

for an attractive interaction. Hence, starting from a Fermi gas, RG reproduces all the

features of weakly interacting fermions.
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