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Abstract

This essay aims to be a study in the phase transitions and critical behavior aspects of stationary

black hole space times, like Kerr-Newman black holes.Though there are divergences in the ther-

modynamic susceptibilities of the black holes,which might signal a phase transition,there are are

certain intricacies involved in their interpretation.Using the thermodynamic fluctuation theory it

is seen that divergences at a continuous turning point of the thermodynamic function need not

be a critical point but only indicates a change in stability.This gives us some insight into the

relation between fluctuations and critical phenomena.It is found that the extremal phase of the

Kerr-Newman black hole corresponds to a critical point of a continuous phase transition.One can

also obtain the critical exponents and scaling laws at that point. Also the formalism of fluctuation

theory can be extended to give a geometric interpretation of some of the usual critical phenomena

in regular systems. In the end,just a mention is made of a recent development in considering the

entanglement entropy of the black hole under the framework of Renormalisation Group.
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1. INTRODUCTION

“Black Holes of nature are the most perfect macroscopic objects that are in the uni-

verse;The only elements in their construction are are our concepts of space and time.And

since the general theory of relativity gives only a single unique family of solutions for their de-

scriptions,they are the simplest objects as well”-This is a very beautiful description of black

holes given by S.Chandrashekar in his book “The Mathematical Theory of Black Holes”.But

it was a very shocking revelation of Hawking,that black holes emit radiation,while they

were considered only to absorb objects.It was even more shocking when Beckenstein showed

that the temperature of the radiation can be attributed as the temperature of the black

hole itself.While the fact that black holes are described by a set of very minimal number

of fundamental quantities like mass,spin and charge,it is very puzzling that it be attributed

with a thermodynamical concept of temperature.And we know that the very reason we have

thermodynamical description of matter,is due to the macroscopic constituency.This puzzling

contrast in the behavior of black holes stays unexplained even today,except for the proposed

solutions of String theory.

On the other hand ,the mere fact that one can attribute equilibrium thermodynami-

cal functions to black holes has tempted many to proceed further and study fluctuations

and phase transitions related phenomena in them.They have also found critical behavior,

like scaling power laws,divergence of fluctuations etc. But there are certain intricacies in

interpreting these notions in the context of black holes.Also we do not have a complete micro-

scopic picture of black holes as of now.This being the case there have been attempts to apply

methods of renormalisation group to the entanglement entropy of the black holes,which have

been found to contribute in part to the entropy of Hawking radiation.

2. BLACK HOLE THERMODYNAMICS

If we consider a Kerr-Newman black hole,one can extract energy from it by sending in

particles with angular momentum,opposite to that of black hole.This is called the Penrose

process.One can ask to what end can this process be continued.As the Penrose process is

possible only with the existence of an ergosphere(which is the spatial limit of existence for

a static observer),the point at which it tends to become a Schwarzschild black hole,would
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mark the end of extraction.One can show that the constraints imposed on the variation of

the parameters of the black hole during the extraction will lead to the following condition

on the area of the horizon:

dA ≥ 0 (1)

The equation relating the area to the variation of other parameters is given by

dm =
κ

8π
dA+ ΩdJ (2)

Here κ is the surface gravity of the event horizon. Ω is the angular velocity of the event

horizon and J is the angular momentum of the black hole. From the above equations one

draws an analogy between the area of the event horizon and the entropy of the black hole.Also

it is the property of the surface gravity that it is constant on all points of the horizon.This is

similar to the condition for a body being in equilibrium at a specific temperature.Thus,the

surface gravity is analogous to the temperature of the black hole. Similarly the mass of the

black hole is related to the internal energy. Extending these analogies, one translates the laws

of Black Hole Dynamics to laws of ‘Black Hole Thermodynamics’. Now let us systematically

develop the formalism and notations for the black hole thermodynamical quantities. We

will be using Planck units c = G = h̄ = 8πkb = 1.In Boyer-Lindquist co-ordinates the

Kerr-Metric is expressed as

ds2 = −∆

Σ
(dt2 − a sin2 θdφ)2 +

sin2 θ

Σ
[(r2 + a2)dφ− adt]2 +

Σ

∆
dr2 + Σdθ2 (3)

where ∆ = r2 − 2Mr + a2 + Q2, Σ = r2 + a2cos2θ , a = J/M ≥ 0. The locations

of the two horizons are given by rH = r± = M ±
√
M2 − a2 −Q2. Now we define the

relevant thermodynamic quantities: The entropy S = 1
4
A± = 1

8
(2MrH −Q2) , Temperature

T =
±16π
√
M2−a2−Q2

A±
= β−1, Angular velocity Ω = 4πJ

MA±
, Electrostatic potential Φ = 4πQrH

A±

The thermodynamic equation of state is given by the relation of the mass to the area of the

black hole

S = (2M2 −Q2 + 2
√
M4 − J2 −M2Q2) (4)

One can observe that the entropy S(M,J,Q) is a generalized homogeneous function

S(
√
λM, λJ,

√
λQ) = λS(M,J,Q). The 3 kinds of susceptibilities corresponding to different

modes of energy exchange namely thermal,electrical and mechanical. The corresponding

susceptibilities are heat capacity(Ca),moment of inertia (Ib) and electric capacitance (Kc).
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These are defined below:

Ca = −β2(
∂M

∂β
)a (5)

Ib = β(
∂J

∂(βΩ)
)b (6)

Kc = β(
∂Q

∂(βΦ)
)c (7)

Here the subscripts denote the quantities fixed by the boundary conditions. Davies [1],[2]

first pointed out that the divergence of the the heat capacity of the Kerr-Newman black

hole is a mark of a second order phase transition. The expression for the heat capacity of

the black hole is

CJ,Q =
MTS3

J2 +Q2/4− T 2S3
(8)

For Schwarzschild black hole it will be C = −M/T , whereas for an extremal Kerr-Newman

black hole, CJ,Q → 0+ .The heat capacity will diverge in between at Qc =
√

3M/2 for a

Reissner-Nordstrom black hole and at Jc = (2
√

3 − 3)1/2M2. In general the argument is

that the divergence of the susceptibility is an indication of a phase transition. There have

been other proposals about a phase transitions at the extremal limit of the black hole when

M2 = a2 +Q2, based on the divergence of thermal fluctuations.Interestingly the divergence

of these fluctuations are related to the divergence of the C−1
JQ. It has been shown from the

theory of non-equilibrium thermodynamic fluctuations that the divergence pointed out by

Davies is only related to changes in stability and not necessarily to a critical point of a phase

transition,whereas the extremal limit turns out to be a point of second order transition.In

the next section we shall explore the intricacy of recognizing a critical point of second

order phase transition from the non-equilibrium fluctuations ,in the context of black hole

thermodynamics.

3. FLUCTUATIONS,DIVERGENCES AND CRITICAL BEHAVIOR

Kaburaki [4] uses Poincare’s one-parameter series of equilibria to separate out the stable

and unstable states.What one does here is consider a function called the Massieu function

Ψ, which contains all the information about the equilibrium states of a system,whose in-

finitesimal increment is given by dΨ =
∑n
i=1Xidxi. Here xi are the thermodynamic variables

and Xi are conjugate to xi .i.e in an equilibrium configuration Xi = (∂Ψ/∂xi)x′i . Now if we
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consider Ψ̂ as the Massieu function analytically continued the non-equilibrium points near

the equilibrium in phase space,it is shown that its second order variation

(δ2Ψ̂)xi = −
n∑
k=1

(
∂2Ψ

∂x2k

)−1

x′
k

(δXk)
2 (9)

where the subscripts are the set of variables kept constant in doing the variation. One also

introduces the macroscopic distribution function for the equilibrium fluctuations

P (δX1, δX2, ...δXn)dδX1dδX2...dδXn ∝ exp(Ψ̂−Ψ)dδX1dδX2...dδXn (10)

With these two quantities we can get the second moment of fluctuations

〈δXiδXj〉 =

(
∂2Ψ

∂x2i

)
x′i

δij (11)

One can see from the above equation that the fluctuations diverge when the second derivative

diverges.Therefore at the turning point where the sign of the tangent changes through infinity

in a continuous part,the variance of the fluctuation also diverges. This is what happens in

the case pointed out by Davies.These divergences are indeed related to the divergences of the

specific heat capacities but are not relevant to any phase transitions.Specifically, speaking

in the context of a black hole,this happens for a black hole in a canonical ensemble i.e in

contact with some constant temperature bath of Hawking radiation.The divergence indicates

an instability associated with the exchange of heat with the bath.The result of instability

may be complete absorption of the radiation or the complete evaporation of the black hole

into radiation.

The other possibility is the occurrence of the divergence asymptotically at the end of

a curve between the thermodynamic variables and their conjugates,which is not a turn-

ing point.This happens to be associated with a critical point of a continuous phase tran-

sition.These kind of divergences occur in the micro canonical environment of the black

hole,which is basically an isolated hole.Here the second moment of fluctuations are inversely

proportional to the the susceptibilities. So when they vanish in the limit of black hole

becoming extremal,the fluctuations diverge as in a continuous phase transition.

4. TWO-HORIZON THEOREM OR SU-CAI-YU THEOREM

Now,with all this in the hindsight,there appears a theorem due to Su-Cai-Yu [5] on the

occurrence of phase transitions in black holes. Now during any process of emission of particles
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be it Hawking radiation,pair creation,super-radiation or the Penrose process like described

before,the parameters of the black hole change.For a Kerr-Newman black hole,these changes

can be approximately expressed as

δM ∝ −M−2

δJ ∝ −JM−3

δQ ∝ −QM−3

Now using these to obtain the second moments of fluctuations and defining a parameter

η = (r+−r−)/2, we have 〈δMδM〉, 〈δQδQ〉, 〈δJδJ〉, 〈δMδQ〉 tend to η as η → 0. In the same

limit 〈δSδS〉, 〈δTδT 〉, 〈δSδT 〉 tend to η−1. So some of the second moments of fluctuations

diverge as r+ → r−. This corresponds to the continuous phase transition from an extreme to

non-extreme black hole.The parameter η acts as an order parameter in the phase transition.

The case of η = 0 corresponds to a symmetric phase of extremal black hole,in which the

two horizons have merged. The horizon temperature is zero in this case. The η 6= 0 is a

less symmetric non extremal phase,which can be described thermodynamically.Only super-

radiation is possible in the extremal phase whereas in the other phase there can be both

super-radiance and Hawking radiation. An immediate observation one can make is that

there is no possibility of a phase transition from a black hole without two horizons as the

order parameter is zero.This is true irrespective of the type of the black hole.This fact can

be stated and proved as a theorem:

Theorem: “If the black hole has two horizons,then r+ and r− are two solutions of a quadratic

equation,some second moments of fluctuations concerning the temperature and the entropy

of the black hole must diverge when the outer and the inner horizons become degenerate”

Proof: Let us expand the entropy and temperature to the first order of η

S = C0(J,M,Q) + C1(J,M,Q)η (12)

T = C(J,M,Q)η (13)

S = XMδM +XQδQ+XJδJ (14)

XM =
∂C0

∂M
+ η

∂C1

∂M
+ C1

∂η

∂M
(15)

Similarly for Xq,J

〈δSδS〉 = X2
M〈δMδM〉+X2

J〈δJδJ〉+X2
Q〈δQδQ〉−2XQXJ〈δQδJ〉−2XMXQ〈δMδQ〉−2XMXJ〈δMδJ〉

(16)
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Since r+, r− are the real roots of a quadratic equation we can write for a function f(M,J,Q)

, η = (r+ − r−)/2 = [f(J,M,Q)]1/2.Therefore,we have for η → 0

∂η

∂J
∼ η−1,

∂η

∂M
∼ η−1,

∂η

∂Q
∼ η−1 (17)

Finally,we get 〈δSδS〉 ∼ η−1 ,〈δMδM〉 ∼ η ,〈δQδQ〉 ∼ η,〈δJδJ〉 ∼ η. Doing the same

calculations for T, we find 〈δTδT 〉,〈δQδQ〉,〈δTδS〉 will diverge η → 0. Since the divergences

come from the linear terms,the higher order terms in η do not affect.Also the proof is

independent of the details of the emission process by which the parameters of the black hole

changes. Thus in the pretext of studying the phase transitions in black holes, we have also

gained clarity in the interpretation of the divergences of the the susceptibilities as phase

transitions.

5. CRITICAL BEHAVIOR AND SCALING LAWS

Let us define some of the relevant response coefficients,which will be related to the sus-

ceptibilities as follows:

χ̄1 ≡
(
∂2S

∂M2

)
JQ

= − β2

CJQ
(18)

χ̄2 ≡
(
∂2S

∂J2

)
MQ

= − β

IMQ

(19)

χ̄3 ≡
(
∂2S

∂Q2

)
MJ

= − β

KMJ

(20)

Near the critical points these quantities obey certain power laws. To define the critical

exponents,let us adopt the following order parameters: ηM = β+−β− , ηJ = (βΩ)+−(βΩ)− ,

ηQ = (βΦ)+−(βΦ)− . However these do not go to zero at the critical point but diverge.This is

because the temperature of the black hole goes to zero in this limit.Let us define the following

terms for simplifying the notation: M = MX(1 + εM), J = JX(1− εJ) ,Q = QX(1− εQ) with

JX = M
√
M2 −Q2 and QX =

√
M4 − J2/M . ε’s are small deviations in the parameters.

Some of the relevant scaling laws:

χ̄1 ∼ ε−αM (J = 0/Q = 0)

χ̄2 ∼ ε−γM (Q = 0)

ηJ ∼ εβM (Q = 0)

ηJ ∼ εδ
−1

J (Q 6= 0)
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There are other scaling laws too for which the reader is referred to the [3].The critical

exponents for the Kerr-Newman black holes are

α = 3/2, β = 1/2, γ = 3/2, δ = −2 (21)

From these we have the equalities related to the scaling laws of first kind:

α + 2β + γ = 2, β(δ − 1) = γ (22)

6. THERMODYNAMIC GEOMETRY

We saw that using the thermodynamic fluctuation theory gave us insights into the stabil-

ity and critical behavior. Now the whole formalism can be put into the language of geometry

as was done by Ruppeiner [6]. We will briefly see how this is done but not get into the details

of its applications. Consider a black hole and its environment or the ‘universe’.The total

entropy is given by Stot = Sbh + Se. We define Fα ≡ ∂Sbh
∂Xα ,where Xα = (M,J,Q). Now

expanding the total entropy to the second order in fluctuations gives:

∆Stot = Fµ∆Xµ + Feµ∆Xµ
e +

1

2

∂Fµ
∂Xν

∆Xµ∆Xν + +
1

2

∂Feµ
∂Xeν

∆Xµ
e ∆Xν

e (23)

The linear terms vanish due to conservation laws and for a very large environment the

second quadratic term is negligible compared to the first.Therefore the above equation can

now be written as
∆Stot
kB

= −1

2
gµν(∆X

µ)(∆Xν) (24)

where the symmetric matrix g is given by

gαβ ∝
∂2S

∂Xα∂Xβ
(25)

From this we can develop a formalism of Thermodynamic Riemannian geometry by defining

the line element as

∆l2 = −2∆Stot
kB

= gµν∆X
µ∆Xν (26)

This unitless positive definite(under stability) line element can be given a physical inter-

pretation: Farther apart the states,less probable are the fluctuations between the states.

Once a metric is defined, one can go ahead and calculate the curvature of the given geome-

try.The thermodynamic curvature obtained can be given various interpretation as the range
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of interaction, the correlation volume etc in various contexts.Refer [6]and references therein

for detailed expositions.For most of the ordinary thermodynamical systems the curvature

is negative. But interestingly for the Kerr-Newman black hole,it is positive.Even more cu-

riously it is also positive for a Fermi gas.There have been attempts to give correspondence

between a two dimensional Fermi gas and a Kerr Newman black hole.

7. BLACK HOLE ENTANGLEMENT ENTROPY AND RENORMALIZATION

GROUP

A last note about a very recent development[7] but not with complete details. We have

seen that the phase transitions at the extremal point is also related to the change in the

contributions to the radiation emitted from the event horizon. In the extremal phase there

is purely superradiance whereas in the non-extremal phase there are Hawking radiation and

other components of emission.Very recently there has been an attempt to see the possibil-

ity of partitioning the entropy of the black into the contribution from gravitational effects

alone and another contribution from the entanglement entropy of the quantum fluctuations

near the horizon. The key points are as follows: There appears to be two contributions

to the black hole entropy.Firstly one due to the gravitational field itself in the absence of

any fields. This is the entropy given by the Beckenstein-Hawking formula.Secondly,the con-

tribution from the quantum fields in the black hole background.This contribution to the

thermal entropy is also proportional to the area,in the leading order,but with a diverging

co-efficient. Apparently this contribution arises from the one loop correction to the ther-

mal partition and can be considered as the entanglement entropy across the horizon,of the

quantum fields in the global pure state. The above quoted reference tries to study the en-

tanglement entropy within the framework of renormalisation group,in a setting where its

contribution is inherently finite.They consider a matter field minimally coupled to gravita-

tion and the key idea is to introduce a Wilsonian RG cut off scale and define an effective

action for the metric,which excludes the effects of IR excitation below the scale.They try

to sidestep the unknown microscopic physics of the UV cutoff and deal only with the finite

quantities,by partitioning out the degrees of freedom into those with momenta greater than

the intermediate scale,which is much lesser than the UV cut-off.Those degrees of freedom

can be integrated and absorbed into the effective action.The paper tries to study whether
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such an approach can be lead to an interpretation of the BH entropy with the entanglement

entropy or not. This development seem to be interesting but beyond the current scope of

the author for a detailed elucidation.The interested reader can study the reference [7].

8. SUMMARY

Black Holes being characterized by just 3 parameters of mass,charge and angular mo-

mentum,are almost comparable to elementary particles having just mass,charge,spin.One

the one hand, low energy systems being complexly constituted by such elementary parti-

cles,have shown amazing richness and contrast in their equilibrium thermodynamical and

critical behaviour.At the same time we have seen black holes being ’simple’(!?) objects, have

surprisingly show such behavior similar to these complex systems. In studying the phase

transitions of black holes,we encountered some intricacies in the interpretation of critical

behaviour and fluctuations. The use of non-equilibrium fluctuation theory provided some

insight into these matters that the diverging susceptibilities need not always mean a critical

point. Also,interesting we saw that two different phases of the Kerr-Newman black hole cor-

responded to the change in the contributions to the radiation from the horizon. It might be

possible that further investigations into the field can lead to some insight into the hawking

radiation related problems.Though it might be a hyperbole,but following the tradition of

how most of the current age articles on black holes end,let us say there might be remote or

close links to even microscopic theory of gravity!
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