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Abstract

This essay examines the Berezinskii-Kosterlitz-Thousless transition in
the two-dimensional XY model. It is an imporant example of phase tran-
sitions occuring without an ordered phase or symmetry breaking, and
introduced topological ideas into the concerns of condensed matter physi-
cists.

Introduction

Perturbation theory, the technique of choosing an exactly solvable hamiltonian
as the jumping off point for a more detailed theory where all additional ef-
fects are assumed to be small and approximately calculable with the first couple
terms in series expansions, was the heart of many-body physics for such a long
time that in some persons’ views it was the whole story. The canonical texts
(e.g. Abrikosov et. al.) applying (quantum) field theoretic techniques to sta-
tistical mechanical and condensed matter problems were largely treatises on
perturbation theory, while in high energy physics the particle interpretation
made explicit by perturbation theory has guided the field for so long and done
so well that many believed field theory itself was nothing more than a means
to calculate the collisional cross-sections to be tested at ever-larger accelerator
experiments. However, in the case of Landau mean field theory it was realized
that perturbation theory could fail in the critical regime where phase transitions
are expected to occur, while the particle physicists had spent years trying to
grapple with the divergences of perturbations beyond the tree-level. In both
cases, the solution lay in a class of techniques now known by the Renormaliza-
tion Group that involves explicitly admitting the provisional or effective nature
of physical theories (i.e. their limited scope) either by ignoring physics beyond
a certain energy scale or averaging over short distance scales to derive collective
degrees of freedom. The exact understanding of these techniques in the 1970s
has changed the way we view physics in such a drastic manner that it is still
seeping into the collective understanding of scholars.

However, what still lacked was an understanding of exactly what it was that
lay beyond perturbative techniques. In this paper we will examine a model that



provided one of the first hints of the richness of physics beyond perturbation
theory: the Berezinskii-Kosterlitz-Thouless transition in the two-dimensional
XY model. It begins with the discovery of possible field configurations that one
could never perturb to from the vacuum and the realization that such states are
still physically important, and can in fact dominate observed effects in certain
regimes. One finds topologically nontrivial vortex configurations, which are
suppressed at low temperatures due to vortex/antivortex binding but become
free at high temperatures. Moreover, this is a phase transition that occurs
without the spontaneous symmetry breaking familiar from Landau theory.

Two-Dimensional XY Model

The basic model we will be concerned with is that of classical two-component
unit vectors (or “spins”) interacting in two dimensional space. The general
Hamiltonian will be
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where S(r) denotes the spin at position r and 6, the angle of that spin with
respect to an arbitrary axis, and we assume J > 0. We will be interested
in lattice systems with nearest-neighbor interactions, and write the reduced
Hamiltonian (hereafter “hamiltonian”) as

=-fH=K Z cos(0; — 6;)
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where § = 1/kgT is the inverse temperature in energy units, K = 8J, and
the angle brackets denote a sum over only the nearest-neighbor pairs of lattice
points. Next we assume that neighbor spins are close in angle, so we can ap-
proximate cos(#; — 0;) ~ 1 — (6; — 0;)*/2. Finally we shall take a continuum
limit of the lattice, supposing that all other length scales of the model are much
greater than the lattice spacing a, hence the angular difference summed over
nearest neighbors at each site ¢ becomes a derivative

(0; — i 50)* + (0i — Oir5y)? — a2(0:0:) + a®(9,0;)? = a®|V0;|?

and the sum over sites i becomes an integral, giving us an effective hamiltonian
K
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where Eq = 2K L?/a? is the (reduced) energy of the ground state configuration
with all spins aligned (assuming a square lattice with area L?). We ignore the
ground state energy, so now this looks like the Gaussian fixed point, but we
have a field that we cannot rescale since it is has period 2w. We note that
the Mermin-Wagner-Hohenberg theorem states it is impossible for there to be
an ordered phase in 2D, and hence no possibility of a phase transition from a
disorder to ordered phase accompanied by spontaneous symmetry breaking.



Vortex Configurations

This periodicity allows nontrivial topological configurations: with a standard
real-valued field, in order for the field to return to the same value at the end
point of a closed path as we move around it, however much the field increases or
decreases as we start going around the loop it must reverse course by the time
the circuit is finished. For a periodic field however, we can increase or decrease
the field by integer multiples of the periodity around the circuit and still come
back to the same physical value of the field, which means in this case we can
allow 6 to change by 27mn as we go around a loop. Mathematically we can write

this constraint as
%V@-dl:%szan.

These are the vortex configurations, and an n = 1 example is given below. It
is clear that it is not possible to continuously deform the vortex field to the
constant field configuration of the ground state, hence we expect there to be a
conserved topological charge associated with the vortex, which turns out to be

What effect do these vortices have on the physics? We take as an ansatz
a vortex with charge n = 41 located at the origin to have the form 6(r) =
arctan(y/x) far from the vortex core (i.e. far enough for our small V6 approxi-
mation to be good). Thus we have V0 = (—y/r?, x/r?) and estimate the energy
of the single vortex configuration to be

Uzz/dei*Jﬂ er7T1H<L>
r a

2 r2

which diverges logarithmically in the thermodynamic limit (L — o), hence a
lone vortex cannot exist. However, if we pair a +1 and a -1 vortex, then far
from either of their cores the field will go to a constant value hence the energy
should be finite. We can again make an estimate by noting that in the region
between the two vortices the angle changes approximately twice as fast, hence

U=2Jrln (2)



where r is the finite vortex separation, so the vortex and antivortex have a
logarithmic attraction (like Coulomb charges in two dimensions).

On the other hand, we can use the single vortex energy to estimate when
vortices will become important: there are (L/a)? ways to place the vortex, hence
it has entropy S = 2kgIn(L/a), and so free energy

2 L

Thus we expect that at low temperatures energy effects will dominate and
vortices will be suppressed (the system will behave like a dilute gas of vor-
tex/antivortex pairs) while at higher temperatures the entropic contributions
favor the proliferation of vortices. In other words, the pairs will unbind and the
system will behave as a vortex plasma (Altland and Simons). We can crudely
expect the transition to occur at T = Jnw/2kp. This heuristic theory is not
reliable for making quantitative predictions, but we shall see it is essentially
correct in its qualitative features.

Renormalization Group Analysis

In this section we follow the approach of Altland and Simons in analysing the
2D XY model using RG techniques. We first note that the “distortion” field
u = V4 is analogous to a velocity field for a fluid, so when there are no vortices
the flow should be derivable from a scalar potential: u = uy = V¢ where ¢ is
an unimportant scalar function, so V x uy = 0 and there is no vorticity. We
wish to therefore relate the topological charge to the vorticity. This can be done
by rewriting the closed path integral constraint as

¢u~d1:/d2x£’~(qu):2ﬂ'n.

Hence we can write the vorticity as V x u = 22 37 n;0%(r — r;) for a set of
vortices of charges n; at locations r;. If we then write u = ug — V x (2¢) with
1 a scalar field, we find V x u = —V x V x (3¢) = 2V?1), so

V=21 n;6*(r —1;).
J

We see then that the field ¢ acts as the potential due to charges of strength
2mn;j, and has the solution ¢(r) = >, n; In(|r — rj|) which is a superpostion of
the potentials. We can therefore write any distortion field configuration as

u=u+u =Veo—V x(2¢)

so the hamiltonian H = — £ [ d?z u?(r) becomes

H = —g /d2a: [(V¢)® =2V -V x (2¢) + (V x (2¢))?] .



We integrate the second term by parts, so assuming no boundary contributions
from ¢ it becomes the divergence of a curl and vanishes. Now we simplify the
third term by using V x (£¢)) = —2x V1), so Vi and V x (2¢)) are perpendicular
to each other (and to ) and both of magnitude |[V¢|. Hence (V x (24))? =
(V x (39)) - (=2 x Vo) = —2- (Vi x (V x (29))) = (V4)?, which we then
integrate by parts in the hamiltonian and then plug in our above expressions
for ¢ and V?1:
He = B [Pz ¢V
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where the subscript on H; denotes that it is just the topological term of the
hamiltonian. However, this expression includes divergent i = j terms where the
logarithmic potential blows up, so it must be regulated by the self (or core)
energy of the vortices:

Hy =Y H;"+2Km > ngn;In(|r; —rj]).
i i<j

So the hamiltonian separates into separate terms for the fields ¢ and v, rep-
resenting the spin-wave and vortex degrees of freedom respectively, hence the
partition function factorizes:
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We see that in the topological term we are summing over configurations of 2N
vortices (since we expect them to come in pairs) that act like charges interacting
through a Coulomb potential. In fact, if we go back a few steps to the integration
by parts, we see that we neglected a boundary term ¢ ¢Vipdf ~ 2mip(L)Vp(L)
as the system size L gets much greater than the positions of any of the vor-
tices. But v = >, n;In(|r; —r;[) — InL ) . n;, hence we must have net charge
neutrality for this term to vanish: ), n; = 0. It turns out that higher charge
vortices are entropically disfavored, so we will work with n; = o; = £1. This
explains the combinatorial factor out front: since the vortices are identical, but
must come in pairs that cancel each other out, for any given arrangement {r;}
of the N vortices (0 = +1), all N! permutations of their labels are equivalent.
Similarly for the N antivortices, hence we divide by (N!)2. Furthermore, as-
suming that the core energy doesn’t depend on the sign of the vortex, we write
the fugacity as yo = exp(HY®), and hence the full partition function for the
topological defects:

= Y[ (7 e
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which is the same as that of a neutral Coulomb plasma in two dimensions
with unit charges. The spin-wave part of the partition function is Gaussian



and has no non-analyticities, hence the phase transition in the 2D XY model
must arise from the Coulomb gas term. We can use this to guide our analysis
of the phase transition: below T we are in an insulating phase where the
charge (vortices) are bound together but above T the system becomes metallic
and the charges are free to move. In other words, the effective interaction of
two external charges is screened by the presense of vortices in between them,
and above the transition temperature should decay exponentially, allowing the
charges to propagate freely.

We calculate the effective interaction perturbatively in the fugacity yo, only
going up to second order where our system has two internal charges located
at s and s’, while the external charges are located at r and r’. We assume
the primed coordinates are negative charges, while the unprimed are positive.
Hence (dropping boldface vector notation for convenience)

eHers(r=r") — e—2KmIn(jr—r'|)

t
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where D(r,1’,s,8') = In(r — s) — In(r — s') — In(+' — 8) + In(r' — §’) and we
factored out the r —r’ interaction in going from the first to second line, while in
going to the third line we rewrote the denominator as (1+42[---]+O(yg)) ! =
1—y2[--]+ O(yd). We note that the prefactor of the part of the integrand in
parentheses acts as a statistical weight that suppresses configurations where the
separation z = s — s’ is large, we change variables to the relative and center-of-
mass coordinates z and X = (s+s')/2,or s =X —x/2 and s’ = X + /2. So
we expand in small z, In(r —s) =In(r — X) —x-Vx In(r — X)/2 +2?V?In(r —
X)/4+ O(2?), and similarly for the other terms in D to find

D(r,r',s,8) = —2-VxIn(r — X) +z-VxIn(r' — X) + O(z%)
hence
KD r'ss) 1 = 9K 71V x (In(r—X)—In(r' — X)) +4K272[2-V x (In(r— X)) —In(r' — X ))|>+O(z?).

To make a long story shorter (see Altland and Simons for further details), we
plug this expression back into our expansion in g, find the the = linear term
vanishes upon integration, then use the Green function property of the Coulomb
potential to further simplify things, and finally absorb the short distance cutoff
into a rescaling of x. Hence

Hessr=r) = o=2Kmnt—r) [1 § 8rd K22 In(r — ') [ duaPe2"K e | O(yd)]
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so we write the effective hamiltonian Hepy(r—r') & —2K.¢pmIn(r—r") to obtain
the effective coupling constant:

Kepp =K —4m3K%y2 / dr 272 + O(y3)-
1



We see that in the regime where the integrand is finite for x — oo, the per-
turbative correction is small, but that the perturbation theory clearly breaks
down for K < K¢ = 2/m, which is the same transition point we found using the
heuristic free energy argument above (i.e. where the free energy changed sign).
Hence we need to be slightly more careful about how we integrate for small K.

This can be done using the renormalization procedure of José et. al. 1977.
One integrates only up to a finite distance x = b, then re-absorbs this into K,
order by order in y3. Hence one has

Kojp=K"+ 47r3y3/ dz2®~*™ + O(yp)
b

where we used K;flf = K‘l(}) - K[~ K '+ [[°[-] and have
defined K= = K~! + 4x3y3 [ dw x3~2K + O(yg). We then rescale z — x/b

to obtain an equation identical to our previous one for K ;flf, but now in terms
of shifted and rescaled Kand yq:

Koy =K' +4n°5; / dwa®>" 1 O(yy)
1

where o = b>"Xyy. We pick an infinitessimal renormalization b = e ~ 1 + ¢

and hence write the differential RG flow equations

dK—!

= A%
Yo

These show that K ~! is always increasing with ¢, while the sign of the derivative
of yo depends on the coupling K. In particular, we see that at high temperatures
(small K), yo increases upon renormalization and is therefore a relevant variable,
while at low temperatures it is irrelevant, and the transition occurs at K =
/2.

Let us look at the flow diagram (source: Altland and Simons; note x = t).
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For low temperatures and small y (dropping the subscript for convenience),
the flow is towards the line of fixed points along y = 0, K~ < 7/2. This corre-
sponds to the insulating phase, with vortex/antivortex dipoles bound together
with some finite radius, hence the fugacity vanishes under renormalization as
we coarse-grain the system to larger length scales. The effective interaction is
then given by the point at which the flow terminates. Starting from higher
temperatures or values of y, however, leads to a flow towards even higher K !
and y, where perturbation theory will break down and we expect free vortices
to dominate the physics. The critical point is thus at (¢,y) = (0,0) where
t = K1 — /2, and the critical trajectory flows into this point. We then
reexpress the flow equations near the critical point as

gz = 473y?

d—z = dty/w

which are manifestly nonlinear recursion relations. To help examine the critical
region one can check that the the quantity ¢ = t2—n*y? is conserved (dc/d¢ = 0),
hence the flows are characterized by different values of ¢, each of which is a
hyperbola with asymptotes y = 4t/72, as is apparent from the figure (and the
asymptotes themselves correspond to ¢ = 0, and are the critical trajectory). So
hyperbolae with ¢ > 0 correspond to trajectories beneath the critical one, where
(starting from low temperature) the flow terminates at (¢ < 0,0), or starting
at t > 0 the trajectories flow from y = 0 off to infinity. The high temperature
case corresponds to the vortex plasma phase since their fugacity is a relevant
operator. On the other hand, trajectories with ¢ < 0 are above the critical one
and correspond to flows from large y at small temperatures, to smaller y as the
trajectories flow towards the critical point, but they cross t = 0 at y > 0 and
then head off to infinity. Since the critical trajectory in the low temperature
phase is t = —m2y, a nonzero fugacity yo thus reduces the critical temperature:
K;'=m/2 - m2y,.

Before concluding this section, let us return to the topic of order and symme-
try breaking in phase transitions. In the high temperature phase of the 2D XY
model, we see the expected disorder with exponentially decaying correlations.
However, we have seen that there is a phase transition not associated with any
symmetry breaking or ordering in the traditional sense: correlations in the low
temperature phase are stronger than in the disordered phase, but are still not
as strong as the correlations associated with long range order. In fact, it turns
out that the low temperature correlations decay with a power law (see Cardy,
Altland and Simons). This is known as quasi-long range order. Instead of sym-
metry being the important concept in understanding the degrees of freedom
(i.e. seeking an order parameter that quantifies the breaking of symmetry) we
are concerned with topological defects in our field configurations and the effects
their existence has on the theory. Since the discovery of the BTK transistion,
topological ideas have proliferated throughout condensed matter physics much
like the vortices in the plasma phase. Through the quantum Hall effect to the



today’s strange new insulators and superconductors, it is clear that topological
thinking is here to stay.

Some Experimental Developments

Though originally discovered in the highly idealized 2D XY model, the Berezinskii-
Kosterlitz-Thouless transition has proved useful in understanding real experi-
ments due to its relation with the neutral Coulomb gas (as well as to the sine-
Gordon model, which we did not mention above). For instance, thin films of
superfluids have been shown to have a phase transition with universal properties
similar to the BKT transition (see Bishop and Reppy, 1978). Additionally it
can be related to a “roughening” transition in crystal surfaces (Cardy). We shall
look at an application to trapped atomic gases (Hadzibabic, et. al., 2006).

Here we simply have a gas of quantum degenerate rubidium atoms, trapped
in an optical lattice so as to be effectively two-dimensional. These experiments
used matter wave interferometry to directly detect free vortices, allowing insight
into the vortex binding/unbinding mechanism itself of the BKT transition that
had previously been hard to find evidence for. First let us observe the close
match between the experimental measurements of the power law correlations
and the theoretical predictions:
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The top graph shows the agreement of the correlations themselves with the
theory, in two different cases, while the bottom graph shows the power law
exponents measured.

Next we observe that in these experiments the presense of free vortices in
the crossover regime was directly detectable as the vertical dislocations in in-
terference patterns, sometimes showing several free vortices at once!
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Perhaps someday we will be able to engineer an experiment that clearly
shows all the qualitative effects associated with the vortices in the BKT theory,
if only for the beauty of being able to so finely control and understand nature.
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