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This essay describes percolation theory.  Once percolation theory is defined,  we explore applications to 
the renormalization group,  computer simulations of potts models,  and randomly punctured conducting 
sheets.



Imagine a very large lattice of empty sites.  At random,  a site could be occupied with 
probability p or unoccupied with probability 1-p.  If we define a cluster as a set of occupied sites that 
can be traversed by jumping from neighbor to occupied neighbor,  then site percolation theory is the 
study of such clusters.  Two sites may also be attached with a bond with probability b or unattached 
with probability 1-b.  Bond percolation is the study of clusters formed by such a procedure,  where 
analogously a cluster is defined as a collection of points that can be traversed by only travelling across 
occupied bonds.  Finally,  site-bond percolation theory has both sites and bonds that are filled at 
random,  with bonds only permitted to be between occupied sites.

It is intuitively clear that the larger p and b are,  the larger the average cluster is.  At a certain 
threshold called pc (or bc),  an infinite cluster forms.  These critical thresholds are listed in the table 
above for various lattices.  Note that analytic expressions for pc are only known for a few cases. Above 
pc,  the infinite cluster takes up an increasingly greater share of he lattice points,  and the remaining 
finite clusters shrink.  The infinite cluster obviously contains every site when p=1.  Near pc,  several 
quantities characterizing the system obey power laws, and exhibit universal behavior.  It should be no 
surprise therefore that some of the machinery used for phase transitions can be applied to percolation 
theory.

The history of percolation theory goes back to the 1940s,  to the work of flory and Stockmeyer 
who attempted to understand the process of small molecules with random bonds forming larger 
macromolecules, in a process called gellation.  A seminal paper in 1957 by Broadbent and Hammersely 
could alternatively be called the start of percolation theory,  where many of the terms such as pc where 
defined, and “percolation” was coined.  

One Dimensional Percolation
The first illustrative model we investigate is 1D percolation,  which is simple enough to be 

solved exactly.  We will see that many of the concepts introduced here generalize to more complicated 
cases.  In this dimension,  site and bond percolation are very similar,  so we will restrict ourselves to 



site percolation.  In 1D,  there is only one possible infinite cluster, that which extends from -infinity to 
infinity.  Clearly pc =1 is a necessity, for p^L goes to 0 for p<1 as L goes to infinity,  and we cannot 
have a single empty site.  Let's now calculate ns(p),  the number of clusters of size s per lattice site.  We 
require two boundary sites to be empty with probability (1-p) each,  and s consecutive occupied sites in 
between the boundary points,  so        
                                                        ns( p)=ps

(1−p)2 . 
 Note 
ns( p)=(1−p)2 exp (s ln( p))=( pc− p)2 exp(−s /sξ) ,  where sξ=−1/ ln( p)∝( pc−p)−1

This expression begs us to define a critical exponent for the cutoff cluster size sξ ,  so we define 
                                                             sξ∝( pc−p)

−1 /σ

,  where σ=1  for 1D percolation.  Another critical exponent is associated with S(p),  the mean 
cluster size.  The probability that an arbitrary site belongs to an s-cluster is given by sns( p) ,  and by 
Bayes' Theorem the probability a site belongs to an s-cluster given that is occupied is 

w s=
sns( p)

∑
s=1

∞

s ns( p)
.  

Thus the mean cluster size is 

S ( p)=∑
s=1

∞

s w s=
1+ p
1−p

=
pc+ p

pc− p
∝( pc− p)−γ  ,

  where γ=1 , defining the critical exponent γ .

Another system that can be solved 
exactly to give us more critical exponents is 
percolation on a Bethe lattice, or Cayley tree.  
In a Bethe lattice,  every point has z 
neighbors,  the first 4 generations of a z=3 
Bethe lattice is pictured to the right.  For a 
Bethe lattice,  pc=1/(z-1).  Let P(p) be the 
probability that an arbitrary site belongs to the 
infinite cluster.  It can be shown via 
consideration that all lattice sites are 
equivalent that for z=3,  

P ( p)=
0 for p< pc

p (1−(
1− p
p

)
3

) for p> pc

.  

Thus
 P ( p)∝( p−pc)

β  , 
where β=1 for the z=3 Bethe lattice.  Note 
P(p) is an order parameter of the system.  

As we did so for d=1, we now calculate ns(p) for the Bethe lattice. 
 ns( p)=∑

t

g s , t p
s
(1− p)

t ,

  where gs,t is a sort of density of states telling us the number of clusters of s sites with t neighbors.  For 
a Bethe lattice,  it turns out that t=2+s*(z-2), giving 

ns( p)=g s , 2+ s( z−2) p
s
(1−p)2+s (z−2 ) .  

We specialize again to z=3,  We compute



ns( p)
ns( pc)

=(
1−p
1− pc

)
2

(
p (1− p)
pc (1− pc)

)
s

=(
1−p
1−pc

)
2

exp (
−s
sξ

)

,   where sξ∝( pc−p)−1/σ  for σ=1/2.  It is also possible to show,  albeit with some difficulty,  that
 ns pc∝s(−τ)  .  
So we have a scaling relation 

ns( p)∝s(−τ)
∗exp(−s / sξ) .

  If we use our scaling ns(p) to calculate P(p), we get

β=
τ−2
σ .  Similarly,  If we use our scaling form to calculate the mean cluster size S(p), we get 

γ=(3−τ)/σ .  Finally consider the kth moment of the cluster size distribution.  By using the scaling 
ansatz once more we obtain

M k ∝( p−pc)
((τ−1−k)/σ ) .  

For k=0, we define α such that 

,  2−α=
(τ−1)

σ =2β+γ

and thus we recover by design the Rushbrooke scaling law.

Fractal Dimension of Clusters

On the right we have a graph where the y 
axis is the size of the largest cluster in site 
percolation at the critical threshold and the x axis 
the dimension of the LxL grid of lattice points. 
We see there is strong evidence that the fractal 
dimension of the cluster is well defined and not 
equal to 2.  We now derive a relationship between 
this fractal dimension and the critical exponents. 
First define the radius of gyration of a cluster as 

R s
2=1 /s∑

i=1

s

(r i−rcm)
2

It can be shown that 
R s

2
=1 /2∗1/s2

∗∑
ij

(r i−r j)
2

Let g(r),  the correlation function,  be the 
probability that a site at relative position r from 
an occupied site belongs to the same finite cluster. 
Then

∑
r

g (r )=S ( p)

So if we define the correlation length as 

ξ
2
=
∑
r

r 2g (r )

∑
r

g (r )

,  then as the probability that a site belongs to a cluster of size s is sns( p) , we obtain

ξ
2
=
∑ 2R s

2 s2ns( p)

∑ s2ns( p)



Inserting previous scaling results for ns(p) into this expression,  and assuming that s∝R s
D defines the 

fractal dimension,  then if ξ∝( p− pc)
−ν , then we derive the fact that D=

1
(ν σ)

.

We can derive another relation involving the fractal dimension by using the fact that the mass of 
the infinite cluster is given by both Ld

( p− pc)
β and also by Ld

∗ξ
(−β/ν) .  Substituting ξ for L 

turns the latter expression into M (L)=ξ(d−β/ν) , so we thus have the hyperscaling relation 
D=d−β/ ν

Renormalization Group Methods
The renormalization group is a theoretically beautiful and powerful tool that also applies to this 

problem.  In general,  we reduce the scale of the problem,  and then we define renormalized bonds and 
renormalized sites in a well defined way.  It is best to illustrate this concept by way of example.

Our first example of applying the 
renormalization group technique will be site 
percolation on the triangular lattice.  We coarse 
grain according to the diagram with three sites 
per coarse grained site.  We declare that a cell is 
occupied if at least two out of three sites are 
occupied.   Thus
p '=p3+3p2(1− p)

The fixed points of this transformation are 0, ½, 
and 1.  0 and 1 are trivial fixed points, p*=1/2 is 
the interesting unstable fixed point.  The 
exponent

ν=
ln (b)

ln(
dp '
dp

)

=
ln (√ (3))

ln(3 /2)
=1.355

These numbers compare well with the exact results of pc=1/2 and ν=4/3.

A more complicated example comes from site-bond 
percolation.  Here both p and b must change under the 
renormalization group transformation.  For calculating p', 
using the figure as our guide requires us to define the coarse 
grained site as occupied if there is a connected path either 
vertically or horizontally spanning the cell.  Therefore
p '=p4

(1−(1−b)4
)+4p3

(1−p)(1−(1−b)2
)+4p2

(1− p)2b . 
It is useful to remember when interpreting this equation that the b factors represent the probability that 
at least one of a certain number of bonds is filled.  As for b',  we need to enter the cell from a particular 
direction, and traverse sites and bonds to connect to the opposing end.  We get

p ' b '=(1−(1−b)2
)( p4

(b4
+4b3

(1−b)+3b2
(1−b)2

)+2p3
(1−p)b2

)

+b( p4
(2b2

(1−b)2
+2b (1−b)3

)+ p3
(1− p)(2b (1−b)+2b)+2p2

(1− p)2b)



.  The flow diagram is given below.  It is seen that there are two trivial fixed points at (0,0) and (1,1).  
There is also a critical fixed point at (.879,.586).  The critical surface consists of the points which flow 
into the critical fixed point,  which is also drawn on the diagram.  The intersection of this surface with 
the axes gives pc=.570, bc=.506, which compares favorably with the exact answers pc=.593, bc=.5.  
After linearizing the renormalization group transformation and diagonalizing it, we get ν=1.47 , 
which is an OK approximation to the exact ν=1.354,  The source of the error is that the probabilities of 
having bonds between coarse-grained sites are 
no longer independent.  A nearest neighbor 
interaction must be included,  and the 
renormalization group flow occurs in a higher 
dimensional space.  This is why analyzing 
pure site or pure bond percolation via the 
renormalization group is more accurate when 
we allow flows in (p,b) space instead of p or b 
space alone.

A Relationship between 
percolation and the Potts Model

We closely follow (6).  Consider a lattice 
Λ⊂Ld , let  S={1,...q} denote the set of 

possible spin states at each site x∈Λ .  The 
partition function is Z (β)=∑

σ
exp(−βH (σ )) where H (σ)=∑

ij

J i , j (δσi ,σ j
−1)−h∑

i

δσi , 1

To map this onto a percolation problem, we use the method of Fortuyn and Kasteleyen.  Define 
K d=(i , j)∈Λ : J i , j≠0 .  For a subset K⊂K d ,  the definition of configuration space is given by 

ΩK={0,1 }
K .  ΩK represents bond configurations,  where 1 denotes the existence of a bond,  and 

0 the nonexistence of a bond. We define p i , j=1−exp(−β J i , j) and specialize to the case where h=0. 

Then Z (β)=∑
σ

exp(−βH (σ ))=∑
σ
∏
K d

exp (−β J i , j (δσi ,σ j
−1))

Z (β)=∑
σ

∏
(i , j )∈Kd

{(1− pi , j)+ pi , j δσ i ,σ j
}

Now every term in this expression is associated with a configuration ω∈ΩK

where there is a bond for the factor p i , j δσi ,σ j
and there is no bond for the factor 1− pi , j .  Thus

Z (β)=∑
σ

∑
ω∈ΩK

∏
emptybonds

(1− pi , j) ∏
present bonds

pi , j ∏
present bonds

δσi ,σ j

Z (β)= ∑
ω∈ΩK

∏
emptybonds

(1− pi , j) ∏
present bonds

pi , j∑
σ

∏
present bonds

δσi ,σ j

The ∑
σ

∏
present bonds

δσ i ,σ j
 acts as a big delta function which divides the spins into clusters, each with the 

same spin.  Thus at last we have 
Z (β)= ∑

ω∈ΩK

∏
emptybonds

(1− pi , j) ∏
filled bonds

p i , jq
N c

where N c is the number of clusters in the bond configuration ω ..
The Swendsen-Wang uses this formula to simulate Potts models.  The algorithm consists of 

initially generating a random lattice of spins, then iterating the following procedure:  If two spins are 
identical, create a bond between them with probability p i , j .  Then flip each cluster of bonds to a 



random q.  This algorithm typically converges much 
faster than the Metropolis algorithm, as it is similar to 
the Metropolis algorithm but involves flipping clusters 
instead of individual spins.  This speedup is especially 
important when the phenomenon of critical slowing 
down is considered.

Conductivity of Randomly Punctured 
Sheets

A final application is conductivity of randomly 
punctured sheets.  Last and Thouless (4) randomly 
punctured graphite sheets.  A picture of the experiment 
is to the right.  Below there is a graph of 1-p versus the 
conductivity.  Notice how the conductivity is only 
nonzero for p approximately .60,  indicating that percolation has at least limited success modeling this 
system. Unfortunately,  percolation fails to model the conductivity or predict it's critical behavior.  This 
is because the conductivity only depends on the “backbone” of a percolation cluster,  and not on arms 
that don't connect to the sides of the sheet of graphite.
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