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Abstract: The renormalization group flow of most systems is characterized by
attractive or repelling fixed points. Nevertheless, some systems can trace a different
trajectory in coupling constant space corresponding to limit cycles or chaotic flow.
I will focus on these types of non-conventional behaviours in the one-dimensional
Ising model with complex coupling constants, and Efimov states. We map the
regions of chaotic, normal, and point out the limit cycle flow spots for these types
of systems.



1 Introduction

We approach the concept of non-fixed point renormalization group in the following
way.

First by introducing some basic concepts of the renormalization group theory.
Next, using the transfer matrix method to solve the one-dimensional Ising model.
Then applying the renormalization group theory to these results in order to get
the corresponding recursion relation. Next I go over the conditions for which the
coupling constant flow is chaotic and what restrictions these can impose on the
coupling constants (namely a complex magnetic field).

I close with the concept of Efimov states, what they are, and their relationship
to non-fixed point renormalization group. Since this is a real system, experimental
evidence for their existence will be presented.

2 The Renormalization Group

In 1971 K.G. Wilson developed the renormalization group theory [1]. The theory
gives rise to critical exponents and explains universality. Initially conceived to
show the relationship between coupling constants at different length scales, today
RG is used not only in a variety of the branches of physics, but has also found
applications in the fields of mathematics and biology.

Renormalization is done in two steps: coarse graining and rescaling. The former
is an integration over short range degrees of freedom, shorter than [. The later is
a rescaling of the distance back to the original length scale. Using the notation
and approach of [2] start with the Hamiltonian:

H=> K,0,{S} (1)

With K, the coupling constants, and ©,,{S} the local operators, functionals of
the degrees of freedom {S}, (S;5; in the Ising model, for example). We consider
a renormalization group transform R; which change the coupling constants as the
length scale changes:

(K] = Ri[K] (2)

The new system will look like the one before renormalizing, but with a new
effective Hamiltonian with different values of the coupling constants, and coarse
grained {S} . The number of degrees of freedom N is reduced by a factor /4. The
coarse graining can be thought of explicitly as a partial trace of the degrees of
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Figure 1: Taken from [2]. Coupling constant flow diagram for an Ising model with
nearest neighbor (K;) and next nearest neighbor (K3) interactions. Fixed point
correspond to different parts of the phase diagram (critical points, bulk phases,
etc.)

freedom. It is imperative that we pick it such a way that we conserve the original
symmetries of the Hamiltonian, and that the partition function is invariant under
the renormalization. These facts will be used below.

Another concept prudent to introduce in this section is the notion of a fixed
point. This is a value for our coupling constant such that:

K] = Ri[K"] (3)

If we know Ry, linearizing around a fixed point will give us eigenvectors and
eigenvalues for the coupling constants. Thus we can map the flow of each K,,. A
positive eigenvalue of K, gives it a flow away from the fixed point, for a negative
eigenvalue, the fixed point is an attractor. Figure 1 shows the flow for an Ising
model with nearest neighbor (K;) and next nearest neighbor (K3) interactions.

Though in general, deriving the particular recursion relations may be an ex-
tremely difficult task, the basic concept behind the renormalization group seems
simple. Take a picture and frame it, put it on a wall. Stand away from the wall
and take a picture of the picture. Develop it and amplify it so that the image fits
the original frame. Cut it out, frame the cut out and repeat the process. Eventu-
ally, intuitively, the image becomes so blurry that one cannot distinguish between
two consecutive steps. We have reached a fixed point. (And, like in formal renor-
malization, we cannot recover information lost by integrating out the degrees of
freedom after each step.)

What if the outcome of doing this an arbitrarily large number of times wasn’t
a blur? What if after a performing the process a number of times the image
re-surfaced— that is —the coupling constants returned to their starting values? Or
what if, like an infinitely complex kaleidoscope, the coupling constants kept chang-



ing with no sign of a fixed point? Limit cycles and chaotic renormalization group
flow in coupling constant space, respectively, are descriptions of these cases. Al-
though Wilson didn’t treat them in his 1971 paper, he was aware of and mentioned
these possibilities.

3 Chaos in the Ising Model

One of the simplest examples of renormalization group flow that doesn’t necessarily
lead to fixed point trajectories is realized in the one-dimensional Ising model with
periodic boundaries. A major pedagogical advantage of this model is the fact that
the renormalization group recursion relations can be solved analytically (whereas
this is not the case for most systems). By staring at a closed form solution, we
develop a physical intuition for the behaviour of the system. In the following
subsections I’ll work out the model to get the recursions using the transfer matrix
method, then introduce chaotic behavior by allowing complex coupling constants.

3.1 1d Ising Using the Transfer Matrix Formalism

With computation of thermodynamic properties of the system in mind, we intro-
duce the transfer matrix method. For a more thorough discussion see, for example,
Chapter 3 of [2] (which I follow below). The trick lies in the factorization of the
partition function.

The nearest neighbor Ising Hamiltonian for a chain of sites is:

—HQ—HZS +J Y 8, (4)

<i3>

The partition function is:

ZN(ha K) — Trelt 2 SitK 2 SiSita (5)

Where and h = fH andK = [J. And since we are using periodic boundaries,
Sn+1 = 5.
Factorizing the partition function as

Z Z 3 (S15)TKS1S2) | [o5(SaSs) +KS:S5] . [o5(SNHS)TKSNSy)
S1

(6)

Each of the terms will be the elements of our transfer matrix T:

h
TSn n+1 2(S’I’L+S7L+1)+KSTLSTL+1 (7)



Since the individual spins have a value of +1 we have only four unique types
of terms, and we can write our transfer matrix as:

B Tll Tlfl B eh-‘rK G_K
T = (T—ll T—l—l) - (€_K e—h-i—K (8)
We then see that the partition function (3) is the trace of the T matrix

Zn(hK)=> .Y Ts5Tss, - Tsys, = »_Tig, = Tr(TV) (9)
S1 SN S1

We can diagonalize T using a matrix S by

: A O
_q-1lpa _ [ M
T =8 Ts_(0 A2> (10)
A1 and Ay are the eigenvalues of T. Now, the properties of trace state that
Tr(TY) = To(T ™) (11)
Therefore
Ao\ N
Zn(h, K) =TT = Y (14 (2) ) (12)
1

The eigenvalues are easily computed to give

Mg = e [coshh + \/sinh?*h + e‘“ﬂ (13)

We see that if they are non-degenerate then, one being bigger than the other,
in the thermodynamic limit:

lim Zy(h, K) ~ \Y (14)

N—oo
We have arrived at a useful form of the partition function! From this we can
readily derive the free energy, magnetization, or other thermodynamic quantities
we might be interested in.

3.2 Decimation

Now we do a little renormalization. Decimation is a process in real space, we obtain
the recursion relation coarse graining the lattice. Ezercise 9-8 in [2] integrates the
short distance degrees of freedom by taking the trace over only even numbered
spins in the partition function above. The number of sites has been reduced by a
factor of 2. Keeping the partition function invariant, as it should be, we write:

Inp(hK') = AN Zy(h, K) (15)
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With AV a normalization constant (a shift in the zeroth of energy) which I will
drop. We can write the equation above in matrix form:

LK K _ 2
K oK N Gt (16)
oK oPHKE oK o-htK

This gives our recursion relations for the two coupling constants:

2 _ e%cosh(QK + h)
" cosh(2K + h)

1 cosh(4K) + cosh(2h)
[ =
2cosh?(h)
We could now get the eigenvalues of the coupling constants and map the flow

diagram towards the fixed points of our coupling constants. Instead we pause.
Instead we look for the chaotic conditions of our system.

(17)

(18)

3.3 Chaos from the Complex Magnetic Field

In this section we introduce chaotic behavior by letting the magnetic field be com-
plex. Showing this requires a bit of mathematical intuition, one can go through the
next computation, then look back at the equations to confirm chaotic behaviour.
I follow the steps on [3]. Starting with a renormalization invariant

m =1+ e*®sinh®h = m’ (19)

the recursion relation of the previous subsection reads:

, 1 4K 1 2
4[(e*c — 1)+ m)
Defining
m
=—— 21
x (64K _ 1) ( )
For positive m and K, —oo < x < 0, and the recursion relation
' =4z(l — ) (22)

is obtained. This recursion relation is chaotic for 0 < x < 1. This can be seen if
we chose x = sin*(mv), with 0 < 1) < % Plugging this into the recursion for x and
using trigonometry we find

sin(m)’) = sin(27) (23)
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Figure 2: From [3]. Phase diagram describing the regions of chaotic flow. 6 is
the magnitude of the pure imaginary magnetic field h, K is our nearest neighbour
ferromagnetic coupling. Note that limit cycles exist in the region of chaotic flow
for integer values of ¥. The region of chaotic flow increases as T — 0.

For an initial rational value of 9, this leads to periodic orbits. For an initial
irrational value of ¢ the trajectory never repeats, 1 is chaotic. Since the cardinality
of the irrationals is greater than that of the rationals, 1 is chaotic for almost all
initial values.

Now that we know the chaotic conditions for these parameters, we backtrack
and figure out what they mean in terms of our coupling constants. For chaos we
need 0 < x < 1 which m < 0. If K is positive and real (1d Ising ferromagnet)
then real values of h will never give m = 1 + ¢*¥sinh?*h. On the other hand, if h
is pure imaginary 6, then sinh*h — sin?f. Then 0 < z < 1 and m < 0 for:

sin?g > e (24)

where 6 is the magnitude of our pure imaginary h. This is the condition for chaos
plotted in Figure 2.
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Figure 3: From [5]. The Efimov three-body bound state in a two-body potential
resembles a Borromean ring. Breaking one ring destroys all the bonds.

3.4 Remarks

I chose to go through this calculation in detail because the model is extremely
simple and can be solved analytically. The reader can develop physical intuition
on each step, which is great as a first exposure, or just to review basic knowledge.
Nevertheless, the introduction of a complex magnetic field begs the question of its
meaning. In [3], Dolan references examples where letting a parameter be imagi-
nary may lead to deeper knowledge of a theory. (For instance, imaginary electric
charge leads to a negative fine structure constant [4].) He also points out that
letting coupling constants be complex is essential to solve some two-dimensional
statistical models. Additionally, after the calculation above, he goes on to discuss
the consequences of having a complex K. In the end, though I understand the
approach, I am not comfortable with the concept of an imaginary field (perhaps we
require it because the model is too simple). Until I understand, I'll be whether the
boundary between physics and manipulation of equations was crossed (is Newton’s
second law meaningful for complex mass?).

4 Efimov States

A three-body Efimov state occurs on a two-body potential too weak to hold a
two-body bound state (Figure 3). Efimov showed [6] that if tuned to resonance
such that the scattering length a is large compared to the range [ of the potential
then there is a number of three-body states available spaced geometrically over
the range h*/mi? and h*/ma?. In fact, the potential can hold an infinite amount
of three-body bound states as a — +o00, equivalently as we get arbitrarily close to
the zeroth of energy at the continuum . He showed that the ratio of the energy of
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Figure 4: From [8]. Efimov three-body states appearance as a function of inverse
scattering length and energy. The shaded region denotes the continuum limit for
trimers (1/a < 0) and for an atom and a dimer (1/a > 0). As we get closer to
resonance more states appear.

two consecutive bound states is a universal number, e?™% ~ 515.

That last statement implies Efimov states can be understood in terms of limit
cycles. That is, as we vary the scattering length, moving closer to resonance we
get a discrete scale transformation: = — (Sp)"z with integer n, and where Sy
is a discrete scaling factor. In principle, we are able to accept an arbitrary, but
(obviously) discrete, number of three-body bound states in our potential as we
arbitrarily approach zero in the inverse scattering length 1/a. We can physically
alter the length scale of the system (as opposed to a coarse graining and rescaling
that change the couplings but must not change the observables). A pictorial
image of this is presented in Figure 4. For a more complete discussion of the
characteristics on the limit cycles Hammer gives a discussion in [7].

Though elusive for many years, the Efimov state has been confirmed relatively
recently using ultracold caesium atoms [8], or even more recently in ultracold
6Li atoms [9]. The Cs atoms in [8] were placed in the potential using a crossed
optical dipole trap. Fine tuning the atomic interactions was achieved using Fresh-
bach resonances by changing the magnetic field. Evidence for Efimov states was
demonstrated by observing resonances in three-body state recombination (Figure
5). Kraemer measured recombination atomic losses in a gas of trapped atoms
when crossing the trimer to continuous boundary in Figure 4.
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Figure 5: From [8]. Triatomic Efimov resonance. Recombination length for a
trimer versus scattering length.

5 Conclusion

The concept of non-fixed point renormalization group flow was introduced using
two approaches. First, in a pedagogical way, the conditions for chaotic behaviour
in the one-dimensional Ising model were derived. Then, striving for meaning, the
implications on the renormalization group for an Efimov state were discussed.

With the first approach we attempt to demystify a theory leading to the non-
fixed point flow, but not its consequences. Since fixed points correspond to bulk
phases, critical points, triple points, or other locations in our phase diagram, cou-
pling constants not renormalizing to them seem strange. One might think that
not much can be learned about the system for non-conventional flow, after all
the renormalization is useful to determine the asymptotics of systems. Hence we
present the Efimov effect, in which the renormalization group provides a way to
understand it’s physics. The fact that the Efimov effect is a limit cycle is a rare
example of real RG limit cycles.
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