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Abstract

Strontium Titanate SrTiO3 (STO) is known to undergo an antifer-
rodistortive transition from cubic to tetragonal phase at Tc ≈ 105K,
and classical to quantum paraelectric phase transition at Tq ≈ 37K.
This paper is intended to use Landau Theory to explore these two
phase transitions of STO, as well as some experimental techniques to
examine this model.
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1 Introduction

Strontium Titanate, SrTiO3 (STO) is a complex oxide material with per-
ovskite structure. It has attracted particular attention because of its poten-
tial use in modern electronic devices. STO is a potential ferroelectric material
material in which the ferroelectric transition is suppressed by quantum fluctu-
ation. At Tq ≈ 37K, the STO crystal experiences a quantum transition from
classical to quantum paraelectric state [1]. As the temperature continuous-
ly increases, a structural phase transition from low temperature tetragonal
phase (point group 4/mmm) to high temperature cubic phase (point group
m3m) is observed in the crystal at Tc ≈ 105K.

During the past few years, STO has been studied thoroughly by Raman
spectroscopy, X-ray, and neutron diffraction. In particular, optical scattering
studies at T < Tq showed that the structure of central peak became more
complex than at the high temperature regions[2]. This peak contains several
components which are forbidden by selection rules. X-ray and Neutron d-
iffraction also show that the structural phase transition at Tc is close to second
order transitions and is caused by softening of the transverse optical mode
at R point. This phase transition has a great historical significance because
every development in the theory of structural phase transitions measured
its success on the ability to correctly describe experimental observations in
STO.

2 Theory

Like most complex oxides with general formula ABO3, STO has a simple
cubic perovskite structure at room temperature, consisting of a simple cu-
bic lattice of strontium atoms at corner, oxygen atoms at the face center,
and titanium atoms at the body center, see Fig.1. The oxygen octahedral
can easily rotate around the center titanium atom, giving rise to possible
distortions to the perfect crystal[3].

2.1 Structural Phase Transition

At Tc ≈ 105K, STO undergoes a cubic to tetragonal anti-ferrodistortive tran-
sition. This phase transition is from the rotation of the oxygen octahedral
around one of the cubic main axes, and two adjacent cell rotate in the op-
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Figure 1: The crystal structure of STO

posite direction (Fig.2). Determine the temperature dependence of the free
energy near this structural phase transition requires calculating the tempera-
ture dependence of the nonlinear susceptibilities[2]. In the Landau theory of
phase transitions, the nonlinear susceptibility in the low temperature phase
takes the form

χQ4mmm
ijkl = χQm3m

ijkl +4χQ4mmm
ijkl (1)

where

4χQ4mmm
ijkl = θijklmnηmηn (2)

χQm3m
ijkl is the nonlinear susceptibility, θijklmn is the sixth rank tensor, both

corresponding to high temperature phase, and η is the order parameter,
which in the case for STO crystal, is the angle of oxygen octahedral rotation
about the crystallographic axis[2]. The temperature dependence of the order
parameter is determined by free energy, which takes the form
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Figure 2: Schematic (001) face of STO crystal structure, showing TiO6 oc-
tahedral and Sr2+ cations; (a)T > 105K, (b)T < 105K, with the rotation
angle been greatly exaggerated

where

A = a(T − Tc), B > B1 > 0 (4)

and a and D are the Landau expansion constants. For STO, a = 5.4 ×
10−3eV K−1 and D = 3.7× 10−15eV cm2[2].

It is known that η = 0 above Tc and η ∝ t1/2 below Tc, where t =
|Tc − T |/Tc is the reduced temperature. Therefore it follows that, below Tc
the temperature dependence of the additional nonlinear susceptibility term
is linear in temperature,

4χQ4mmm
ijkl ∝ α(Tc − T ) (5)

where α is a constant. In the high temperature region where T > Tc,
4χQ4mmm

ijkl = 0. The temperature dependence of χQm3m
ijkl is unrelated to the

phase transition, and can be included as a second order polynomial of the re-
duced temperature t. Therefore it follows that the temperature dependence
of nonlinear susceptibility has a kink at T = Tc.

2.2 Quantum Paraelectric Phase Transition

Upon cooling, the dielectric constant of STO increase according to a Curie-
Weiss law, ε = B + C/(T − Tc); however, on approaching Tq = 37K from
above, ε stabilizes at the value exceeding 104 and remains constant from
3K down to the lowest value 30mK[1]. This property has been termed
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a ”quantum paraelectric state” by Muller and Burkard[4]. This quantum
paraelectric-ferroelectric phase transition is influenced by coupled fluctuating
phonon modes.

The soft mode optical phonon in ferroelectrics can be well described by
a bosonic field theory[5]. The order parameter of this theory is the local
polarization φ(x, t) =

∑n
i=1 eiri(x, t), which is formally defined as one unit

cell ar x containing n atoms of charge ei, each individually displaced through
ri by the optic mode. As the optical mode softens, the action develops and
instability and the order parameter must describe both quantum and thermal
fluctuations. The action in three dimensional space can be expressed by
Ginzburg-Landau phenomenology

S =

∫ β

0

{
∑
q,α,β

[(
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c2
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]φα(q)φβ(−q)

+
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Where a is the lattice constant,c is the speed of phonons, q2 =
∑

α q
2
α, the

dimensionless momenta −π < qα < π, and the second summation is carried
out under the conservation of momemtum, q1 + q2 + q3 + q4 = 0. Since the
field φ describes an electric dipole, the action includes long range dipole in-
teration and also a coupling to the underlying lattice through the parameters
r, f, g and h. The estimated values for the parameters are r = 5.31, f = 55.7,
g = 0.39, and h = 5.1. The term u and ν describe local anharmonic interac-
tions gives a net positive contribution, which ensures the polarization remain
bounded. The mean-field phase diagram is sketched in Fig.3[5].

In the low temperature limit with the polarization aligned in one direc-
tion, we can integrate over quantum fluctuation to yield the free energy
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with ξ = r + 2(u + µ)φ2 + 4uφ2/3. This equation is found to be in good
agreement with experimental results[5].

Figure 3: The phase diagram in the u-ν plane at zero temperature in the
mean-field approximation. The crosshatched forbidden region denotes where
the polarizibility would diverge without higher-order corrections. The solid
thick line represents a first-order phase boundary between the light gray re-
gion that denotes diagonal order and the dark gray which labels the Ising
phase. In each regime the inset axes illustrate the polarization solution high-
lighted by the bold vector.[5]

3 Experimental Techniques

The experiment of measuring the dielectric constant loss in STO crystal
in a frequency range from 100Hz < ν < 100MHz and temperature from
60K < T < 150K has been reported in ref[6]. The measurements were
performed in home-built He-flow cryostat. All crystal in this experiment
revealed the structural phase transition at Tc = 105K as shown in fig.4.

Another way to examine the phase transitions in STO is elastic mea-
surements on STO single crystal. The basic idea is that linear, harmon-
ic mode coupling between the transverse optic (TO) soft phonon mode at
wave vector q and the longitudinal acoustic (LA) mode at same q would
depress the entire acoustic phonon branch, producing a decrease in LA
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sound velocity. Fig.5(a) illustrates peaks in the longitudinal elastic coeffi-
cient CL = (1/2)(C11 + C12+2C44), and Fig.5(b) shows C44[7].

Figure 4: Temperature dependence of the dielectric loss in SrTiO3 at mea-
suring frequencies of 735 Hz and 480 kHz. In the experimental setup the
electric field was parallel to the [110] direction. The solid lines are spline fits
to get an estimate of the frequency independent loss, on which the relaxation
peaks are superimposed
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Also a dielectric investigation on STO down to 0.3K shows the classical
to quantum paraelectric phase transition at Tq = 37K[4]. Between 4K and
0.3K, the dielectric constant ε is independent of temperature. ε does not
vary below 4K is an evidence for occurrence of a quantum-mechanical regime
which stabilizes large ferroelectric fluctuations in the paraelectric phase, as
shown in Fig.6. phase.

The quantum phase transition can be examined by electron paramagnetic
resonance of Fe3+, which gives evidence for a classical to quantum phase
transition in STO at Tq = 37 ± 1K[1], both in tetragonal and pressure-
induced trigonal phase.

Figure 5: (a)Longitudinal elastic constant CL in strontium titanate versus
temperature, normalized to unity at 295K. Maximum is observed at the
106.5K; (b) C44 shear coefficient in STO. A sharp dip is observed at 106.5K

4 Conclusion

In summary, both cubic to tetragonal structural phase transition and classical
to quantum paraelectric phase transition in STO have been examined in the
context. Also we have discussed some experimental techniques to study the
phase transitions. We have shown the concept of using the order parameter,
which has been implemented by Landau to describe the general behavior
of the system. In principle, minimizing the free energy with respect to the
order parameter can characterize the behavior of any system undergoes phase
transitions.
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Figure 6: Dielectric constant ε110 and ε11̄0 of single domain STO.
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