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Abstract

Measurements done on LiVGe2O6 by Millet et al. [Phys. Rev.
Lett. 83, 4176 (1999)] on phases of the Singlet ground state of the
Spin-1 Chain can be described by the Bilinear-biquadratic spin-1 chain.
I will discuss these results, among the results of others and talk about
theoretical calculations done by A. Lauchli [Phys. Rev. B 74, 144426
(2006)] that describe the phase diagram of the bilinear-biquadratic
model. At a particular point in the phase diagram the model becomes
SU(3) globally symmetric and is known as the Lai-Sutherland model,
it is Bethe ansatz solvable as shown in [A Schmitt et al., J. Phys. A:
Math. Gen. 29 (1996) 3951-3962]. Finally I will describe the thermo-
dynamics of the model as where calculated by Lou et al. [Phys. Rev.
Lett. 85, 11 (2000)].
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1 Introduction

In the following literature review, I will go over a particular model for Spin-1
chains, namely, the bilinear-biquadratic spin-1 chain. This model usually
appears as an effective description of interacting systems such as [1] and [2]
and more interestingly as a description of actual physical situations such as
23Na atoms in optical lattices [5]. I will explain how the model is confirmed
experimentally for the first two cases.

The phase diagram for the bilinear-biquadratic chain, is ”very rich”, it is
studied in detail using numerical methods by A. Lauchli et al. in [4] building
on Renormalization Group calculations performed by C. Itoi et al [6]. At a
particular point of the diagram, the model exhibits a global SU(3) symmetry,
which is Bethe anzats solvable. I will devote a subsection to this.

2 Experimental Realizations (some examples)

2.1 Some experiments

A key feature that exists on Spin-1 chains that is not realized on spin-1/2
chains, is the existence of a Haldane gap[1]. This provides natural experimen-
tal testability for the realization of such a system.

Figure 1: M-H curves at T=1.3K
for Ni(C2H8N2)2NO2(ClO4). (Image
found in [1])

Katsumata[1] based on the idea that,
since the ground state and the first
excited states are a singlet and a
triplet respectively, proposed that as
the energy of a triplet state is low-
ered, due to the magnetic field be-
ing lowered, it will match the en-
ergy of the ground state at a crit-
ical field Hc. Experimentally this
is done by measuring the magne-
tization, which will be zero for
H < Hc and will turn on at
Hc.

The figure to the right, also found
in [1], shows the M-H curve for
Ni(C2H8N2)2NO2(ClO4), which is a S=1 1D Heisenberg antiferromagnet.
The data matches the description of the provided data. The appropriate
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Hamiltonian for this system is

H = −J
n∑
i=1

Si · Si+1 +D(Szi )2

where J is the exchange interaction, N the total number of spins and D > 0
the single ion anisotropy constant.

In order to understand the ground state of similar S=1 systems, Affleck
et al. [2] showed that the Valence Bond Solid(VBS) state is the ground state
of the Hamiltonian

H = −J
n∑
i=1

Si · Si+1 + (Si · Si+1)
2/3

The spin singlet state of the S=1 chain can be written with two valence
bonds emanating from each site[1]. The energy of both states is also similar.
Based on this, the VBS model would be a good approximation for the S=1
Anti-ferromagnet. This also was also tested experimentally by [1] with sat-
isfactory results.

2.2 LiV Ge2O6

Figure 2: Polyhedra representation of
LiV Ge2O6 (figure from [3])

The most general Hamiltonian de-
scribing an isotropic Spin-1 chain
is

H = −J ′
n∑
i=1

Si·Si+1+J
′′(Si·Si+1)

2

whose phase diagram can
be studied by performing the
reparametrization J ′ = J , J ′′ =
−βJ . For this parametrization,
the Haldane gapped phase occurs
for J > 0 and −1 < β < 1 while
the dimerized phase happens for
β > 1 for J > 0 and β < 1
for J < 0 [3]. I will return to
the phase diagram in the next sec-
tion.
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Most bilinear biquadratic systems, display a small β which limits the ex-
perimental studies of the full phase diagram[3]. P. Millet, et. al. studied the
Vanadium Oxide LiV Ge2O6 [3] which is a spin-1 chain and has a different
susceptibility than other spin chains. They suggest that this system may
have a significant biquadratic exchange (large β).

The (really interesting) crystal structure (left), as explained in the article
[3], consists of isolated chains of edge sharing V O6 linked together by chains
of corner sharing GeO4 tetrahedra. The structure was also determined ex-
perimentally by [3]. Chains are connected to their neighbors through only
two tetrahedra making the coupling perpendicular to the chains small. This
is why the model for a 1D chain is valid.

They measured a drop in the Susceptibility at 22K which they believe is
a spin-Peierls transition. The regime above this temperature is characteristic
of spin-1/2 systems and not of spin-1 systems. This because spin-1/2 systems
are gapless in this region, suggesting gapless modes or absence of a Haldane
gap. Furthermore, when they compared their data to previous calculations,
they also concluded that the system had to be a spin-1 system.This implies
that either the system has other possible underlying interactions that close
the gap, or the biquadratic interaction is strong (|β| > 1). The authors
conclude the later based one the argument the bond interactions with other
chains are weak in the regime that was studied.

This experimental realization is just another motivation to study the
whole phase diagram for the bilinear-biquadratic spin-1 model.

3 Phase Diagram

The bilinear-biquadratic S=1 1D chain, has a ”very rich” phase diagram [4].
The Hamiltonian is

H =
n∑
i=1

(
cosθSi · Si+1 + sinθ(Si · Si+1)

2
)

When θ = π/4, the model acquires a global SU(3) symmetry and its called
the Lai-Sutherland model. I will talk about it in a subsection below.
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3.1 Phases of the S=1 bilinear-biquadratic chain

Experiments performed in optical lattices with 23Na by [5] as mentioned in
[4], are realizations of a tunable S=1 bilinear biquadratic Chain. A. Lauchli
et al. in [4] performed numerical studies of the phase diagram of the model,
which I will go over.

Figure 3: Phase diagram of the bilinear-
biquadratic lattice (Image from [4])

According to [4], the well estab-
lished phases of the phase diagram,
(right), are a Haldane, a ferromag-
netic one, and the dimerized one.
As they theorize (and explain), the
π/4 ≤ θ ≤ π/2 phase is gapless
with spin quadrupolar correlations.
The other phase near −3π/4, they
explain, is possibly a spin nematic
phase.

At the θ = π/4 point, as men-
tioned before, the model has an
global SU(3) symmetry. C. Itoi et
al., studied the behavior of the model
around this point in the following manner [6].
Non-abelian Bosonization of the low energy behavior around the θ = π/4
point maps the model to a gapless SU(3) Wess-Zumino-Witten (WZW) the-
ory. Considering deviations from this point as perturbations they proceeded
to do Renormalization Group calculations to find the behavior around the
point.

The action they use is a perturbed Conformal Field theory,

A = ASU(ν) +
2∑
i=1

gi

∫
d2z

2π
Φ(i)(z, z̄)

where the first term is the SU(3) symmetric WZW action and the second
part,

Φ(1)(z, z̄) =
2√

ν2 − 1
JAL (z)JAR (z̄)

and

Φ(1)(z, z̄) =
4TAαβT

B
αβ√

ν2 − 1
JAL (z)JAR (z̄)
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These perturbations are deviations from the SU(3) symmetric model. The
T’s are the generators for the Spin-ν algebra and the J’s are the fermion cur-
rents used for the bosonization procedure (The spin Hamiltonian is written
in terms of fermions and then bosonized).

Figure 4: Renormalization Group Flows
(Image from [6])

The Renormalization Group Flows
for ν > 2 (left), as calcu-
lated by Itoi et al. [6]. In
the diagram, γ corresponds to
Tan θ (the θ from the bilinear
biquadratic chain). g2 is propor-
tional to γ − 1. As can be seen
from the flow diagram, there is
a fixed point at g∗1 = g∗2 =
0.

They calculate three different
regimes: (I quote) (i) g2 = 0; SU(ν)
symmetric and asymptotically non-
free, (i) g2 > 0; SU(ν) asymmetric
and asymptotically nonfree, (ii) g2 <
0; SU(ν) asymmetric and asymptoti-
cally free. The corresponding phases
around θ = π/4 are then, massive for

θ > π/4 and massless for θ ≤ π/4.

As explained before, Lauchli et al. built on this calculations to construct
the diagram above using different numerical methods [4].

Figure 5: Quadrupolar expectation values
compared to Spin ones (Image from [4])

First, they calculated quadrupole
(ie. (Sz)2(−k)(Sz)2(k)) expectation
values and compared them to the
spin (Sz(−k)Sz(k)) correlations at a
particular k. Their results, shown
right, show that the quadrupolar
interaction becomes dominant for
π/4 < θ < π/2. This is why they
call this phase spin nematic. This
maps with improvement the phase
diagram around the SU(3) symmet-
ric point mapped by Itoi et al.
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3.2 The Lai-Sutherland model

The bilinear biquadratic Spin-1 model has a global SU(3) symmetry when
θ = π/4. This model is the so called Lai-Sutherland model.

Figure 6: Phase diagram of SU(3) sym-
metric bilinear biquadratic spin-1 chain
model (Image from [7])

This model can be thought of as
a generalized Heisenberg model to
S=1[7]. Upon the inclusion of exter-
nal fields, Schmitt et al. studied its
phase diagram[7] (left). The model
they studied is

H = H0 +BSz +DS
(2)
3

where
Sz =

∑
i

Szi

and
S(2)
z =

∑
i

(Szi)
2

This model, as they mention, can
be solved analytically via a bethe
ansatz. This is what allowed Itoi et

al. to map to a WZW theory[6].

In the phase diagram, according to Schmitt et al., there are essentially 3
different regions: Large D, ferromagnetic regime and the regime that corre-
sponds to the 3 SU(2) subalgebras of SU(3). The latter are labeled U,V,T
as they are called in particle physics.

4 Conclusions

The bilinear-biquadratic lattice model describes a wide variety of physical
systems. Some of those, such as 23Na in an optical lattice, can actually
match the model together with its tunable parameters making the search for
a better understanding of the model very desirable. Other models however
can be explained by particular phases of this model, still justifying the time
invested in its study.
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Theoretical studies were reviewed, in particular, exploring the phase di-
agram of the bilinear biquadratic S=1 chain and a particular state of it,
namely the SU(3) globally symmetric Lai-Sutherland model. These studies
where done using both numerical and exact calculations. Itoi et al.[6] made
an interesting mapping to a WZW theory for the SU(3) symmetric model
which they then perturbed to get a better understanding of the phases around
the simetric point.
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