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Abstract

We briefly review general relativity, present some basic ideas of AdS/CFT
correspondence, thereby motivating the importance of anti de Sitter (AdS)
spacetime. We show how to compute thermodynamic quantities such as
temperate, free energy for a given background geometry. By computing free
energy, we show in AdS space, if a black hole is smaller than a critical size
then it becomes unstable and evaporates into thermal radiation. This first
order phase transition is driven by breaking of conformal symmetry of AdS.

1 Introduction
With increasing temperature, the thermal fluctuations start increasing in a system,
resulting in rearrangement of zero-temperature degrees of freedom in such a way
that it might sometimes result in a completely different phase. Ice melting into
liquid water, or ordered to disordered phase transition in an ising lattice, a normal
metal becoming a superconductor or an insulator etc are some familiar examples
of classical phase transitions. These degrees of freedom do not necessarily have to
be of matter fields. General relativity allows us to treat space-time geometry dy-
namically, meaning geometry can be seen as an emergent phenomenon of matter
(stress tensor). Here we study a phase transition in the spacetime geometry, which
is a transition from a black hole (BH) solution to a no-black hole solution (called
thermal spacetime). This is known as Hawking-Page (HP) phase transition [1].

The reader must be warned that this transition is significantly abstract to study
or verify in any of our laboratory setups. The phase transition occurs in a spe-
cial kind of spacetime called anti de Sitter (AdS) space (see Fig. 1a), which
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a. Anti de Sitter Space b. Circle of Imaginary Time.

Figure 1: (a) AdS spacetime with a BH and boundary; (b) The Euclidean geometry
with compact time dimension, with period equal to inverse temperature.

is not a physical spacetime like Minkowski spacetime. Then why should we
care? The answer lies in our attempts to understand physics at Planck energy,
Ep =

√
~c5/G ≈ 1019 GeV. In other words we want to understand ’how do

quantum particles or fields behave under very strong gravity’. In the past two
decades, this question has led to a plethora of theories of quantum gravity, such
as string theory or loop quantum gravity etc. During these attempts the idea of a
holographic universe [2] was developed and independent to the validity of all other
theories, the holographic principle of Maldacena [3] (also known as AdS/CFT cor-
respondence) has proven to be a powerful calculation tool [4]. Here CFT stands
for a field theory with conformal symmetry, loosely speaking this is equivalent to
a scale invariant theory.

The idea of this correspondence is the following. Like a hologram encodes
three dimensional data on a two dimensional sheet, AdS/CFT conjectures that our
four dimensional universe (Minkowski space) can be seen as a hologram of a five
dimensional universe which has AdS spacetime geometry. To be more precise, if
we have a conformal (or quantum) field (Φ) theory described on a d-dimensional
physical or Minkowski space, with partition function Z[Φ], we can reproduce a
lot of the details of this theory by looking at the boundary of a (d+1)-dimensional
classical field (or string) theory in AdS space,

ZCFT [Φ] = exp(−iSo.s.bdy [Φ, gµν ]) . (1)

Here the field theory is described by the action S[Φ, gµν ] and So.s.bdy is the sad-
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Boundary (operator) Bulk (field)
Stress tensor Tµν Metric gab
Global current Jµ Maxwell field Aa
RG flow Radial coordinate
Bosonic operator Klein-Goldon field
Fermionic operator Dirac field
Scaling dimension of operator Mass of the field
Global symmetry Local isometry
Temperature of the field theory Hawking temperature of BH
Phase transition Instability of black holes

Table 1: A holographic dictionary: an entry from the left column, which is an op-
erator in a field theory living on the boundary, can be mapped to the corresponding
entry (field) on the right column, a quantity that describes the gravity theory on
the bulk of AdS.

dle point action (or on-shell action), computed at the boundary. A more useful
”dictionary” of correspondence is presented in Table 1. The above relationship
makes the study of AdS spaces very promising. Using this correspondence, the HP
phase transition was later given field theoretic meaning by Witten, who showed
that this transition in AdS5 space is nothing but a holographic dual description of
confinement-deconfinement transition in a SU(N) gauge theories, such as QCD
[5]. Later on the relation with Hagadron transition in string theory or Kosterlitz-
Thouless transition in condensed matter were also explored [6].

We arrange the term paper in the following manner, in Sec. 2 we briefly review
general relativity and discuss some properties of AdS geometry by solving it from
vacuum Einstein equation for negative cosmological constant. In Sec. 3 we com-
pute temperature of a background geometry by constructing ’time circle’. In Sec.
4 we compute the free energy for the thermal AdS and BH-AdS and show that
there exists a critical temperature ( or a BH radius), where the free energy differ-
ence changes sign, signaling a phase transition. Instead of trying to be historically
accurate by sticking to the AdS (bulk) description only, we will be referring to the
boundary field theory implications of many of the physical quantities as we come
across them. We work in c = ~ = kB = 1 unit.
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2 Anti-de Sitter Spacetime
The Einstein equation of general relativity can be see as the equation of motion
for the metric tensor, obtained by minimizing the following action written over a
(d+ 1)-dimensional spacetime manifoldM, with boundary spacetime ∂M [7].

S = − 1

16πG

∫
M
dd+1x

√
g (R− 2Λ) +

1

8πG

∫
∂M

ddx
√
γ

(
−2K +

4LΛ

d

)
.

(2)
The first piece in the action is called the Einstein-Hilbert action with a cosmolog-
ical constant, Λ. The metric tensor onM is gµν , which has a determinant g. The
second piece is added whenever the spacetime has a boundary (a finite size uni-
verse), referred to as the Gibbons-Hawking-York boundary term1. Here γµν is the
metric of the boundary ∂M. K is the trace of the extrinsic curvature of the bound-
ary manifold, defined as K = γµν∇µnν , here nν is the outward normal vector on
the boundary. Notice we haven’t written any matter action (energy-momentum
tensor), hence the equation of motion we obtain will give us vacuum solutions or
empty universes. Varying the above action we get the following Euler-Lagrange
equation of motion, also known as (vacuum) Einstein equation:

Gµν ≡ Rµν −
1

2
gµνR = −Λgµν . (3)

Here Gµν is the Einstein tensor. Rµν is the Ricci tensor, which is obtained from
various tensorial operations on the metric tensor. R = gµνRµν is called the scalar
curvature or Ricci scalar. The simplest solutions to this equation are spacetime
manifolds with constant curvature (such as a sphere or a plane):

R = 2Λ

(
d+ 1

d− 1

)
=


Λ = 0, (flat) Minkowski space
Λ > 0, de Sitter space
Λ < 0, Anti-de Sitter space

(4)

The cosmological constant is a measure of vacuum energy of the spacetime, caused
by virtual excitations in the vacuum. Our observable universe has a very small
positive cosmological constant (an expanding universe), hence in a strict sense
it’s a de Sitter space. For the purpose of discussing Hawking-Page transition we

1A more condensed matter perspective of this term is, this is equivalent to the requirement
of adding a Wess-Zumion-Witten (WZW) boundary term to a Chern-Simons topological gauge
theory in the bulk, in order to describe the boundary modes or edge states of a Hall system.
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restrict our discussion to AdS spaces. With Λ = −d(d − 1)/2L2, the solution
to the Einstein equation [Eq. (3) or (4)] is the AdSd+1 metric, given by (in a
coordinate system that globally describes AdS )

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(d~x)2 , f(r) = 1 +

r2

L2
. (5)

Here ~x is written to collectively denote all the remaining (d − 1) spatial coordi-
nates. L is the radius of curvature, a smaller L means the spacetime has a larger
curvature 2. Notice the negative sign in front of dt2, this is called Lorentz signa-
ture. By performing a wick rotation we can go to an imaginary, τ = it thereby
making this negative time go away, dτ 2 = −dt2. This signature is called Eu-
clidean signature. We’ll stick to this signature for reasons that will be clear in the
following section.

A more useful coordinate system is Poincaré coordinates, which covers r ≥ 0
region of the space. In this system the metric becomes

ds2 =
L2

r2
dr2 +

r2

L2

(
dτ 2 + d(~x)2

)
. (6)

In this coordinate system the boundary is at r → ∞ and r = 0 is known as
the Poincaré Killing horizon. The geometry above or in Eq. (6), have no BH, we
refer to them as thermal AdS. An important observation should be made here, if we
scale (τ, ~x)→ λ(τ, ~x) then by rescaling r as r/λ, the metric can be left invariant.
Thus scale invariance (conformal symmetry) is an isometry of the AdS space.
Thus we can see how AdS/CFT gives a geometrical meaning to the conformal
symmetry of the field theory living on the boundary ∂M = {(τ, ~x)}.

The Einstein equation also admits a solution that has a Schwarschild BH in
the AdS spacetime. The Schwarschild-AdS (S-AdS) background has a metric,

ds2 =
r2

L2

(
f(r)dτ 2 + (d~x)2

)
+

L2

r2f(r)
dr2 , f(r) = 1−

(rh
r

)d
. (7)

Here, r is the radial direction, f(r) is called the redshift factor or the emblackening
factor. Near the boundary r → ∞, f(r) → 1, the metric looks like AdS metric

2A more mathematically accurate meaning of L is, it’s the radius of the embedding hyper-
boloid: −X2

1 −X2
2 +

∑d+1
i=3 X2

i = −L2, a Lorentzian analogue of a (d+ 1)-dimensional sphere
with two time-like coordinates, (X1, X2). Note L should be non-zero and has dimension of length.
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in Eq. (6). We say the S-AdS geometry is ’asymptotically AdS’. Note the metric
describing a Schwarzschild BH in Minkowski space is given by

ds2 = f(r)dτ 2 + dr2/f(r) + r2(d~x)2 , f(r) = 1− 2GM/r. (8)

Near the boundary this becomes ds2 = dτ 2 + dr2 + r2(d~x)2, which is the flat
Minkowski space. We call the geometry is ’asymptotically flat’. In the following
section we discuss the thermodynamics of these spacetime backgrounds.

3 Black Hole Thermodynamics
Temperature. The idea of temperature in a field theory emerges when we in-
troduce imaginary time by performing a Wick rotation, τ = it. To describe a
theory at temperature T we make this imaginary time periodic by the factor β,
where β = 1/T . In our context, the periodicity we obtain will help us find the
temperature of the boundary field theory. Lets consider a generic BH solution

ds2E = gtt(r)dτ
2 +

dr2

grr(r)
+ gxx(d~x)2 . (9)

The horizon is defined where grr(rh) = gtt(rh) = 0. So a near-horizon expansion
would be grr(r) ' g′tt(rh)(r−rh), grr(r) ' g′rr(rh)(r−rh) and gxx(r) ' gxx(rh).
Now performing a coordinate transformation R = 2

√
r − rh/

√
grr′ this metric

becomes

ds2E = dR2 +
R2

L2
τ

dτ 2 , Lτ = 2/
√
g′tt(rh)g

rr′(rh) . (10)

This metric is a plane metric with compact τ axis, see Fig. 1b. The compacti-
fied time axis (time circle) has a (proper length) perimeter 2πLτ

√
gtt(r), which

smoothly shrinks to a point as we approach the horizon. If one does a local mea-
surement, the periodicity of this imaginary time is 2πLτ , which is the inverse
temperature β.

Using this method if we compute the temperature of a flat space Schawrschild
BH [in Eq. (8)] then it becomes (also known as Hawking temperature)

β = 2πLτ = 8πGM . (11)

Free Energy. The free energy of a theory is given by, F = −T lnZ , where
Z is the partition function. Under saddle point approximation, the dominant con-
tribution to the partition function comes from the action [Eq. (2)] written on the
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manifold, the metric of which solves the Einstein equation [Eq. (3)], or the on-
shell action. Note since we want to study the thermodynamics of this theory we
would use the compactified imaginary time metric (Euclidean signature). Thus
the free energy is given by

F = −T lnZ ≈ TSo.s.
E . (12)

As an example, lets compute the free energy of the Schwarzschild BH in
AdSd+1 spacetime. Substituting the metric in Eq. (7), in the Einstein-Hilbert
action [Eq. (2)] we obtain the on-shell action,

FS-AdS =
TD

8πGL2
lim
ρ→∞

(∫ β

0

dτ

∫ ρ

rh

dr

∫
VD

d~x

)
= −L

DVD
16πG

(
4πT

D

)d
(13)

HereD = d−1 is the number of spatial dimensions of the boundary sub-manifold
with volume VD. Note that the topology of this space is crucial in determining the
free energy. At the boundary, we saw time is compact, hence it’s a circle topology
S1. We can choose the remaining spatial directions on the boundary manifold to
be compact, say SD or a non-compact space extending to infinity in all directions,
say RD. In earlier case we denote the line element as dΩD and the later case as
d~x. Since in AdS, with large enough temperature the BH horizon (which has a
sphere topology) can be made to coincide with the boundary manifold, only the
choice of SD makes sense. The RD choice means the BH horizon is spread in all
directions, and reducing temperature causes it to recede in r direction, but never
vanish, unlike the SD case. This topology is also called a ’black brane’. So strictly
speaking the above computed free energy is that of a S-AdS black brane.

In the following section we compute the free energy for AdS with boundary,
∂M = S1 × SD. We’ll see that along the radial direction of SD, the conformal
symmetry of AdS is broken, causing a gapped state (gap ∼ M ) to emerge, which
is a black hole solution. This doesn’t happen in case of ∂M = S1 × RD, since
the conformal symmetry is unbroken.

4 Hawking-Page Phase Transition
In order to see if there is any phase transition possible in AdS space, between a BH
solution to a no BH solution, we want to compute the difference in free energies
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Figure 2: Temperature of a Schwarzschild BH plotted against BH mass M , in flat
space (left) and in AdS space (right). Figure adapted from [8].

associated with the respective metrics. In the global coordinate AdSd+1 metric is

ds2 = f(r)dτ 2 +
dr2

f(r)
+ r2dΩ2

D ,

where f(r) = 1 +
r2

L2
− ωD

M

rd−2
, ωD =

16πG

DVD
. (14)

By setting M = 0, we can go from (Schwarzschild) BH metric to thermal AdS
metric. The horizon of the BH is at rh, such that f(rh) = 0. Using the methods
discussed in the previous section, we can compute the temperature of this BH
geometry,

β =
4πL2rh

dr2h + (d− 2)L2
. (15)

Notice the difference of this temperature as compared to the temperature of a BH
in flat spacetime in Eq. (11). This is plotted in Fig. 2. Unlike the flat space BH,
there exists a temperature minima in AdS BH, which signal a phase transition.
We’ll later see that this is the critical temperature.

The next thing is to compute the temperature in the thermal AdS space, local
to a radial coordinate ρ. Since the boundary should not be affected by the BH
phase transition we must demand that this local local temperature be equal the
BH temperature computed above when ρ reaches the boundary

βloc(ρ) = β

(
1 + ρ2

L2 − ωD M
ρd−2

1 + ρ2

L2

)1/2

. (16)
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Now we compute the difference in free energy (cf. previous section)

β∆F =
D

8πGL2
lim
ρ→∞

(∫ β

0

dτ

∫ ρ

rh

rDdr −
∫ βloc

0

dτ

∫ ρ

0

rDdr

)∫
SD

dΩD ,

Fbh − Fth =
rDh VSD

dr2h + (d− 2)L2
(L2 − r2h) . (17)

Here Fbh is the free energy of AdSd+1 with the BH solution and Fth is the free
energy without BH. Note the expectation value of energy is 〈E〉 = M , which
is like a gap. This difference when plotted against rh looks like a mexican hat
potential, suggesting energetically favorable BH solutions exist at a finite size. In
other words at low temperatures, the horizon radius is small so rh could be smaller
thanL, making the thermal AdS a less energetic solution. With rising temperature,
a sign change might happen when rh > L, causing a first order (continuous)
transition to a BH solution. So a BH with radius small than a critical size can not
survive the thermal fluctuation and thermal AdS becomes a more stable solution.
(describe the entropy driven argument). The critical size is the AdS curvature
radius rh = L. Since the size of the BH can be related to it’s temperature via Eq.
(15), so the critical temperature associated with this rh becomes

Tc = D/2πL . (18)

Due to space restriction we are refraining from discussing other fixed points
in this geometry, which correspond to two differently massive BH solutions. We
also avoid discussing entropic issues, which primarily drive such phase transitions.
Relations to QCD or hagadron transitions are also omitted.
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