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Abstract

In this essay, we reviewed the recent attempts on relating Machine
Learning to Renormalization Group. Restricted Boltzmann Machines,
a type of neural network, was shown to be connected to Variational
Renormalization Group. A treatment of Principal Component Anal-
ysis analogous to momentum shell Renormalization Group uncovered
a possible fixed point.
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1 Introduction

The resurgence and success in machine learning (ML) have started a trend
to combine physics and ML in physics community. Some borrowed ideas
from ML and modified them for physics contexts[l, 2], while others could
not help but wonder: could physics help explain why ML works? Works
thus emerged trying to examine ML from a Renormalization Group (RG)
perspective[3, 4, 5, 6]. We will focus on two of the methods(model) studied,
namely Restricted Boltzmann Machines (RBM) and Principle Components
Analysis (PCS), which are connected to variational and momentum space
RG respectively.

The essay is organized as follows: we first introduce RBM and PCA
and how they are used in typical ML contexts; in section 3 we present the
connections between these methods and RG; then we pose several questions
and potential problems of the articles; lastly we briefly comment on the other
two works.

2 A Crash Course in ML

2.1 Restricted Boltzmann Machines

One of the central goal of ML is to extract information from a collection of
high dimensional data. A straightforward approach would be to model the
data as the probability distribution of some high dimensional random vector.
Among all the choices of probability distribution, RBM stands out due to its
simplicity. Formally, RBM is specified with the following joint distribution
function|[7]:

e~ E({vi}{hi})

P({v}, {h}) = ———— 1
({vi}, {hi}) Z (1)
where
% i i
and
Z ="Tr, s e~ E{vi},{hi}) (3)

In the above equations, {v;} represents the random vector that we observe,
known as visible units, and {h;} is a auxiliary vector known as hidden units.
All units take values £1, like Ising spins. Because of the notions of energy
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and partition function, RBM belongs to the class of energy-based model.
Physically, this model describes the full interaction between the visible layer
and the hidden layer. The model can be represent graphically (see fig.1a).

One might wonder why we take the detour to introduce hidden units, in-
stead of allowing interactions within the visible layer directly. One advantage
of RBM is that it serves as a transformation of original data. Suppose we
have found (or trained) the best parameters ({b;}, {c;}, {W;;}) that capture
the data distribution. Then equivalently we also obtained a distribution for
the hidden units,

e—E({vi}.{hi}) e—Hr({hi})

zZ B Z

P({hi}) = Try, P({vi}, {hi}) = Try, (4)
By sampling the distribution, for example, we obtain a new set of data which
are transformed version of observed data. One can then feed the data into
another RBM, and repeat the process. The resulting multi-layer, deep ar-
chitecture model is known as Deep Boltzmann Machine (DBM) (See figlh).
After the above “preprocessing”, one can apply other ML algorithms on the
transformed data. As we will see, such transformation could be connected
to a Variational RG transformation.



2.2 Principle Component Analysis

The other approach to analyze a high dimensional data set is to reduce
its dimension. Following the conjecture that data might distribute along
some hyperplane, we seek a linear projection that best retains the original
information. PCA is a way of doing so.

Given n samples of a m-dimensional vector ¢, we can compute its co-
variance matrix A, and then perform a eigendecomposition of the matrix,
A = QAQT. In this way, we have discomposed the variations of the data
into modes that are independent at second order; the modes are called prin-
cipal components (PCs). By applying the orthogonal matrix Q7 to ¢, we
transform it to ¢ which resides in the space of eigenmodes. If we only choose
the first [ eigenvectors (those with largest eigenvalues) as the basis of projec-
tion, the resulting ¢’ (I-dimensional) will retain the information of the most
important modes.

Let’s consider a simple example of PCA. Suppose we are given some data
generated by multivariate Guassian distribution, and we want to understand
them in just one dimension. Then a quick PCA would reveal the two eigen-
modes of our data, as shown in figure 3. Projecting the data onto the major
axis of the ellipse, we would observe that the one dimension distribution
obeys Gaussian distribution.

Suppose ¢ has some complex distribution P(¢). Performing the pro-
jection actually is equivalent to marginalize the lowest eigenmodes in the
distribution:

P(®)=[]D_P{s}) ()
=l ¢
This “integrating out some modes” approach resembles momentum space

RG we learned in class, and in later section we’ll see the implications of this
resemblance.

3 Connecting RG with RBM

3.1 Variational RG

We start by slightly modifying the notion of real space RG used in class.
As usual, the Hamiltonian describing a spin system is specified by a set of



coupling parameters, K = {K,},
H ({v;}) Z Kv; + Z iV + (6)

After a RG transformation R, the new effective Hamiltonian, H' = R[H],
is specified by K = { K},

H'({h;}) = ZKh +Z hihi + ... (7)

And the two Hamiltonian is connected by requiring partition function to be
the same:
Z="Tr, e =Ty, e ¥ (8)

Now let’s introduce an general function with arbitrary form, Th\({v;},{hi}),
which depends on some parameter A, and rewrite the effective Hamiltonian

as
e H R — Ty, (T thih)~H({w:)) 9)

In the form, the RG transformation is entirely encoded in the function T). By
choosing convenient forms of T\ we are able to analyze the transformation,
even when it’s not exact (which means that equation 8 might not holds).
We can also optimize the parameter A\ variationally to approximate some
exact RG transformation. Therefore, function T’ defines a Variational RG
transformation.

3.2 The Mapping

The crucial observation made by authors of [3] is the following: if we interpret
the spins before and after VRG transformation as visible and hidden units,
then the energy function in equation 2 defines a VRG transformation through

E({vi}, {hi}) = =Ta({vi}, {hi}) + H({vi}) (10)

Then, evidently equation 9 and 4 are describing the same transformation
(One can check by dividing 9 by Z).

We pause for a moment to clarify what we mean by transformation. We
assumed that both {v;} and {h;} obey Boltzmann distribution, and thus
they are accompanied by Hamiltonians H and H’; further, Hamiltonians are



determined by coupling parameters K and K’, which are infinite dimensional
vectors. Therefore, by transformation we mean the mapping K — K.

This observation thus provides us an interpretation of what the afore-
mentioned ”preprocessing” does: it performs a VRG transformation on the
observed data set. The more layers of RBM we stack together, the more
rounds of VRG transformation we are performing. By using learning algo-
rithms to optimize parameters ({b;},{c;},{Wi;}), we are effectively varying
A for T).

3.3 Learning the Ising Model

The authors then conducted a numerical experiment where they feed two
dimensional spin configurations, sampled from a Ising model near T,, into a
DBN. They plotted the learned parameter W;; to explicitly show how each
hidden unit interact with the visible units, shown in fig.4. They claimed that
the network learned block spin RG.

A = B DIMIEN
PRI
P s
AR
C s X iu -4 oY

I O .
25
I D G I O S ..

100

Transformations

s Figure 5: A Venn diagram il-
2 Justrating relations between men-
tioned transformations.

Figure 4: The parameters of learning
Ising model. A: Archetecture of the
network. B,C: Plots of W;;



4 Connecting RG with PCA

In this section we will present the treatment of PCA in [5], and show that the
resemblance mentioned in equation 5 indeed can be exploited further using
the techniques of momentum shell RG.

4.1 A Quick Review of Momentum Space RG

To illustrate the connection, we begin from a sketch of Momentum shell RG
for Ising universality class[8]. Instead of starting with microscopic Hamilto-
nian in the real space RG approach, we start with a effective Hamiltonian in
Landau theory:

1 1 1
~H{S} = /ddr bVQS + §r052 + Zuos‘*] (11)

where S is a function defined on R?. In momentum space, the Hamiltonian
can be written as,

ddk:

_H{S'} = / (8" (k)] (12)

The idea is to integrate out the highest frequency modes in the range % <
|k| < A, which has the effect of coarse-graining the lattice by scale [. By
rescaling the lattice back to scale A and comparing the form of H, we can
obtain the RG recurrence relation of ry and ug after some nasty but system-
atic calculation. In particular, the non-Gaussian coupling constant wug has
the following relation:

dug

ds

where A is some hard-to-calculate constant. From this one immediately find
two fixed points, namely

= (4 — d)u, — Au? (13)

' =0,u" = —— (14)

which correspond to Gaussian fixed point and Wilson-Fisher fixed point re-
spectively.



4.2 A Momentum Flavor Treatment of PCA

Imagine that we have observation data for a N-dimensional random vector
¢ (a collection of N random variables). In analogy to the proceeding section,
we begin by modeling the distribution as

P e_H{¢} 15
(#) =" (15)
where Z is defined in the common sense and
H{¢} =) oo +9) ¢!+ .. (16)
ij i

This Hamiltonian based on Gaussian distribution with a ¢* correction is a
minimal model, just like the above Landau effective Hamiltonian. In fact,
equation 16 is nothing more than a discrete version of 11.

/ddTV?S — Z i K04 (17)
ij

The principal components (eigenmodes of K) correspond to momentum
(Fourier modes). With that in mind, we proceed just as in momentum RG.
First transform into eigenmodes space,

> Kb =Y N (18)
ij H
and introduce a distribution for eigenvalues

o) = 5 S50 - A) (19)

We can then convert the sum into integral
A
> A= / dAp(A)A (20)
0
“w

In this form, our minimal model is of course very similar to the previous
section. The authors of [5] continue their calculation under the limit of small
g, the ¢* coupling constant, and arrived at the following recurrence relation:

g—§— By’ (21)
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where B is some constant that depends on the distribution of eigenvalues of
K. Remarkably, this indicates the existence of two fixed points. One is the
familiar g = 0, i.e. Gaussian fixed point. The nontrivial one is analogous to
the Wilson-Fisher fixed point. In particular, if p(A) ~ Al@=1

g- <o —2 22
9

4.3 Pinning the Fixed Points in Data

The authors tried to illustrate how the fixed points play their roles by an-
alyzing data from neural activity and stock market. In the figures 6a and
6b, they use the normalized fourth moments of the data, ({(¢})/(¢?)?), as an
indicator of the effect of ¢* coupling.

For the first data set, the fourth moment remained nearly unchanged and
far away from Gaussian (dashed line) as the lowest eigenmodes were thrown
away, suggesting that the neural system might be close to a critical point.
For the second set, they found that the largest eigenmodes determines where
the fourth moment flows to. For example, if the largest 10 percent were
removed, the fourth moment quickly would flow to that value for Gaussian.
However, if all modes are kept, the flow is more complex and non trivial.
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Figure 6: Analysis of data with PCA. The circles represent median of the
normalized fourth moments. The entire spectrum is plotted for each fraction.



5 Discussion

Thus far, we have done a coarse-grained summary of the connections. We
will begin to pose some points not addressed in the papers.

5.1 VRG-RBM

Transformations are not created equal We first wish to point out that
VRG transformations, RBMs, RG transformations and “good” transforma-
tions are all different sets (a schematic Venn diagram might help 5). Appar-
ently, RBMs/VRG are variational, and thus different from RG. RBMs are
different from VRG transformations because the optimization goal of RBM
is:

P e v\)\({vi}) T e_EA({Ul}v{hl}) 2
({vi}) = AL - (23)
yet the goal of VRG is:

Z="Tr, B_H”W‘{hi} = Try, o e~ Ex{vit{hi}) (24)

In words, one tried to fit the microscopic distribution exactly, while the other
wished to maintain the partition function, or macroscopic observable (free
energy).

The true problem is, RG/VRG/RBM are all too general. RG might not
be able to performed easily, which is why we introduce VRG. We could lift
the restriction of RBM, and allow interaction within hidden layer and visible
layer (Boltzmann Machine), and it still could be mapped to VRG. We could
write all sorts of crazy T with no practical use: remember, we still need to
trace out all {v;}.

RG approach displays its power when a “good” transformation yields a
simple or tractable K’ = R[K]. And then we could linearize the recurrence
relation and analyze the RG flow, without actually tracing all degrees of
freedom. However, the mapping uncovered by the authors of [3] does not
show that RBM transformations are “good” or not, and the powerful tools
in RG cannot be applied. [6] provides an amusing example: let {h;} be
completely independent from {v;}, and the transformation is still a VRG. To
summarize, merely bearing the name of RG is not worthy of excitement.



Block Spin or correlation? The numerical experiment, however, is in-
teresting in the sense that it hints the RBM might learned a good RG trans-
formation: block spin. Yet two things remain unclear. First, the goal of
RBM is completely different from goal of RG, so why should we attribute
the interaction to RG but not the distribution itself? As a alternate, could
the blocks just stands for correlations between spins? It’s possible that the
block in {W;;} is just saying units in a block tends to align, instead of ac-
tively coarse-graining the configuration. The second question can be tested
by changing the temperature of the model, and see if the block size change.
We are interested to do so in the future.

5.2 PCA-RG

Most Important? In the treatment of momentum RG, we integrate out
the shell of highest momentum, so that the microscopic variation are averaged
out. In this sense, the highest momentum modes are least important for
the calculation of partition function. On the contrary, in PCA, the highest
modes are the most important ones. Thus, we cannot apply the intuition
that changing scale of A is integrating out unimportant information in PCA.

The legitimacy of approximation The calculations of fixed point, though
not shown in this essay, depends heavily on the assumption that g is small.
Analogy in momentum RG is the assumption that ¢ = 4 — d is small. Notice
in the latter case, the action to take ¢ = 1 is justified through techniques
from asymptotic analysis of the perturbation series. However, there’s no cal-
culation of the magnitude of ¢ in real data, and no justification for cases
when ¢ is not small. This puts the consistency of the calculation in question.

A possible connection to bigger world Recently, people have found
that many system, modeled by a large number of parameters, are insensitive
to the changes in parameter space in a wide range of directions[9]. This prop-
erty is termed “slopiness”. This property can be quantified by the spectrum
of eigenvalues of Fisher information matrix (FIM), and in many cases, the
spectrum distributes uniformly, p(A\) ~ 1, which corresponds to v = 1 in the
relation preceding equation 22.

Since the critical dimension of Ising universality class is fundamentally
due to the symmetry requirement, we wonder whether the fixed point in
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eq.22 hints certain underlying symmetry for the “sloppy universality” class,
if it exists in those data sets. Curiously, in a recent work[10], it is shown that
upon compression of parameter space, conventional statistical physics mod-
els develop sloppiness. This discovery again seems to suggest a connection
between RG and this new universality class.

We end the discussion about PCA and sloppy model by pointing out a
connection between FIM and covariance matrix: the inverse of FIM is used
as a Maximum Likelihood estimator for covariance matrix[11].

5.3 Other Attempts

RG and MERA In [4], the author attempted to relate a RG-based nu-
merical method to a proposed deep architecture. However, the numerical
method, Multiscale Entanglement Renormalization Ansatz (MERA) is used
in quantum system, and is less like RG learned in class. In addition, the pro-
posed network is not used in practice. Therefore, we choose not to discuss
this paper with more detail.

RG and Deep Learning in General [6] spends lots of pages trying to
argue the necessity of deepness in networks from information theory. Yet,
its connection to RG stopped at analogy level and appeared less concrete
than other selected works. Their comments on [3] in this paper did provide
valuable insights and help us clarify the ideas of [3].

6 Conclusion

There’s been a surge of paper in the interface between machine learning
and physics, not restricted to RG. We are optimistic about the future of this
interdisciplinary trend, and we are excited to see new physics and applications
emerge from the frontier.
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