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Abstract

Barkhausen noise has attracted growing attentions as an example of complex

disordered systems. The renormalization group approach for Barkhausen noise has

been developed for the past decades to understand the critical phenomena and

applied to other similar systems such as deformation behaviors for solids under

tensile stress. In this paper, experimental results and theoretical analysis in the

field of Barkhausen noise within a renormalization group framework are reviewed.

The discussion of results and future work regarding potential application to other

systems are also studied.
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I. INTRODUCTION

When a ferromagnet system is driven by a changing magnetic field, the system jumps
from one state with minimum free energy to the next. We observe this process as ferro-
magnetic materials magnetize. However, many ferromagnets do not magnetize continuously
and smoothly, but rather in a series of discrete jumps in different magnetization sizes. The
sudden changes in the magnetization of the material produce pulses in the coil around and
generate an avalanche detected as a crackling sound, called Barkhausen noise. The phe-
nomena was first observed in 1919.1 Interestingly, many experiments showed the resulting
noise follows power law distributions over several decades in the form of pulse areas and
durations.2,3 Similar scaling behaviors also occur in other systems exhibiting a wide range
of avalanches sizes and durations: earthquakes,4 resistance fluctuations in superconductor,5

etc.
For the wide similarity between Barkhausen noise in magnet systems and other systems

in non-equilibrium state, researchers have been studied Barkhausen noise as an example,
hoping to conclude such scaling behaviors to be independent of microscopic details. The suc-
cessful model could imply all systems mentioned that share the similar behaviors fall within
the same universality class. Also, the wide applications of the model enable researchers to
translate the similar techniques to understand other complex and non-equilibrium systems
such as solids’ deformation with the dependence on disorder. One powerful tool to begin
this study is the renormalization group (RG) approach.

In this paper, I will briefly explain the modeling of ferromagnets under driving external
sources, the use of the RG approach and the scaling collapse and other useful methods used
in past research and experimental and simulation results along with their implications.

II. METHODS

A. RFIM

To examine the statistical properties of conventional ferromagnets, a hypercubic non-
equilibrium zero-temperature random field Ising model (RFIM) is used. The RFIM consists
of a lattice of N spins where each spin points up (si = +1) or down (si = −1). Spins are
under an external magnetic field, H(t) that is changing adiabatically slowly. Similar to the
traditional Ising model, spins have nearest neighbors interactions with the parameter J . In
this paper, J = 1 is used for calculation.

The model also impose a local magnetic field as the local dynamics for spin i, fi. In real
materials, there are always disorder in the form of defects, impurities and other material
imperfections. The local magnetic field characterizes these inhomogeneities that result in
random anisotropies and varying interaction strengths within the system. We assume a
Gaussian distribution6 for fi, centered at 0:

ρ (fi) =
1√
2πR

exp

(
− f 2

i

2R2

)
, (1)

where R is the standard deviation, corresponding to the disorder level. Disorder leads to the
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fact that not all spins will flip homogeneous to the external magnetic field. Instead, they
will flip in various avalanche sizes, strongly affected by the local dynamics. Including the
random field characterization, the hamiltonian is6:

H = −
∑
i,j

Jijsisj −
∑
i

(H + fi) si, (2)

Each spin is aligned with its local effective field given as:

heffi = −
∑
j

Jijsj −H − fi, (3)

The system starts H(−∞) = −∞ and slowly adiabatically increase from −∞ until the local
effective field change the sign when the spin flips.7 Since the system also includes nearest
neighbor interactions, one flipping spin will trigger other spins to flip as well, causing an
avalanche. We expect a continuous second order phase transition8 as follow:

• Zero disorder
The random field for each spin is the same. If one spin slips and the external field
overcomes the interaction in between other spins, all spin will flip. In the hysteresis
figure of Magnetization vs External magnetic field, we should expect a sudden jump.

• Infinite disorder
The random field is significantly different from spin to spin. Each spin will flip in-
dependently from the varying magnetic field and have little effects on other spins to
flip. Therefore, we should expect a rather smooth hysteresis figure of Magnetization
vs External magnetic field.

In between two behaviors above, the phase transition should occur at at some critical value
R = Rc where the hysteresis loop exhibits non-analyticity as infinite slope (dM

dH
|±Hc → ∞),

shown in Fig 19 below.

Figure 1: Schematic hysteresis curves for different values of the disorder R. Left: R < Rc (discon-

tinuous hysteresis); center: R = Rc (critical hysteresis); right: R > Rc (smooth hysteresis). For

each case, the lower (upper) curve corresponds to an increasing (decreasing) magnetic field.9
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B. Mean Field Approximation

The model is solved using Mean Field Approximation that reflects many qualitative fea-
tures of the scaling behaviors of the system in finite dimensions. The coupling constant Jij
is replaced by J/N where we assume that each spin interacts equally with other spins. The
Hamiltonian6 is then:

H = −
∑
i

(JM +H + fi) si, (4)

where M is the total magnetization for the system.

As the paper will show later, mean-field theory successfully predicts the critical exponents
for systems in six and more dimensions. On the other hand, renormalization group approach
will describe the critical exponents in (6− ε) dimensions for ε > 0.

As mentioned earlier, the magnetization per spin should take the following form:6

M =

∫
ρ (f) si df, (5)

= (−1)

∫ −JM−H
−∞

ρ (f) df + (+1)

∫ +∞

−JM−H
ρ (f) df, (6)

= 1− 2

∫ −JM−H
−∞

ρ (f) df, (7)

The equation above has the following results:

R

>
√

2
π
J ≡ Rc, Eq. 7 is analytic for all H,

<
√

2
π
J ≡ Rc, Two stable and one unstable solutions forM(H)

(8)

At the critical point R = Rc, we observe the diverging slope of M(H). Unlike equilibrium
state, non-equilibrium system with no thermal fluctuations is forced by the local dynamics
to stay in the current local energy minimum until disrupted by the external field. There-
fore, for increasing/decreasing external magnetic field, the system occupies the state with
lowest/highest magnetization. Consequently, we observe a hysteresis loop for M(H) with an
infinite value of dM

dH
. We can continue to expand the derivative of M at the critical point,

2Jρ (−JM −H) = 1.6

dM/dH ≡ χ = [ρ (xc)]/{J [ρ′ (xc) (x− xc) + 1/2ρ′′ (xc) (x− xc)2 + ...]} (9)

where xc ≡ −JM(Hc(R)) − Hc(R). The integration of Eq. 9 leads to the leading order
scaling behavior:6

M(r, h) ∼ |r|βF±
(
h/|r|βδ

)
, (10)

for small h = H−Hc(Rc) and r = (Rc−R)/R and the mean-field critical exponents β = 1/2
and δ = 3. F± is given as the smallest real root g±(y) of the equation below,

g3 ∓ 12

π
g − 12

√
2

π3/2Rc

y = 0, (11)
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where ± refers to the sign of r.
We continue to make the assumption that, during the interval of random fields [fi, fi +

2S(J/N)], the probability density of random fields is approximately constant. A Poisson
distribution can be used to characterize the probability for an avalanche of size, S, as:6

P (S) =
λ(S−1)

(S − 1)!
exp(−λ), (12)

where λ = 2JSρ(−JM −H) = S(t+ 1) and t ≡ 2Jρ(−JM −H)− 1. Using the probability
density function and Stirling’s forma, we find the scaling form near the critical point to be6

D(S, r, h) ∼ S−τD±(S/|r|−1/σ, h/|r|βδ), (13)

where the mean field scaling function is

D±(x, y) =
1√
2π

exp
(
−x[1∓ π

4
g± (y)2]2/2

)
, (14)

The mean-field critical exponents are calculated as6

Table I: Critical exponents from mean-field calculation

Exponents values Mean Field

τ 3/2

σ 1/2

βδ 3/2

C. Renormalization Group Approach

In order to apply RG methods for RFIM, time parameter, t, is introduced to the problem.
External magnetic field now has a time dependence as H(t) = H0 + Ωt6, where H0 is the
magnetic field when t = 0 and Ω > 0 is the sweeping rate for a monotonically increasing
magnetic field. Each spin also takes a double-well potential V (si)

V (si) =

{
k
2
(si + 1)2, for s < 0,

k
2
(si − 1)2, for s > 0.

(15)

The partition function Z for the non-equilibrium system is calculated as10

1 ≡ Z =

∫
[ds]J [s]

∏
i

δ (∂tsi/Γ0 + δH/δsi) , (16)

where Γ0 is a friction constant in the form as (1/Γ0)∂tsi(t) = −δH/δsi(t). The conditions
are imposed because of the similarity to the real magnets: as the external field is increased,
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spin flips which reflects the domain wall motions. The role of a partition function could
help derive useful exponents and relationships such as the correlation functions. In Ref
[6], the investigators employed a coarse-graining procedure as an iterative transformation to
calculate different frequency of freedom in the systems to arrive the fixed points.9

x→ bx, t→ bzt (17)

where Ref [6] derived the critical exponents in (6− ε) dimensions:

1/σ = zν + (2− η)ν +O(ε2) = 2 + ε/3 +O(ε2), (18)

τ = 3/2 +O(ε2), (19)

θν = 1/2− ε/6 +O(ε2). (20)

From RG approach, renormalization-group flows can be constructed to longer length scales.
The magnetic model mentioned above, after RG approach, is coarser-grained and removed
parts of the degrees of freedom but introduced with different coupling constants.

Figure 2: Renormalization-group flows for RFIM model.11 A fixed point S∗ is self-similar and it

has the same scaling behavior on different length scale.

As the we introduce higher level of disorder under the unstable point S∗, the RG flows to
the right, which leads to small avalanches. When it flows to the left, the system experience
large and possibly infinite-sized avalanche. As it crosses Rc, a phase transition occurs.

Mean-field method also applies here for the soft-spin case. Phase diagram can be con-
structed using mean-field calculation.6
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Figure 3: Mean-field phase diagram for the soft-spin model of RFIM. The dash line at (a), (b) and

(c) represent three different disorder.6

In this case, we observe the non-analyticity at R = Rc. Once the disorder cross such
critical value, we expect a diverging derivative value of dH/dR. More importantly, the soft-
spin model induces history memory for the system. For all values of disorder, hysteresis loop
is presented.

D. Experimental & Numerical Results

From the theoretical calculation using both consistent mean-field theory and renormal-
ization group approach, Ref [11] compares both the numerical and experimental results to
theoretical calculation.

Figure 4: Numerical results and experimental results compared to theoretical calculations. Left:

Numerical values (filled dots) of the exponents indicated in figure in 2, 3, 4 and 5 dimensions.The

error bars result from the systematic errors from scaling collapse analysis.11 Right: Comparison

between experiments with theory. Different experiments on Barkhausen noise in magnets.11 “Our

model” indicates RG approach. “Front propagation” is not included in this paper.

Figure 3(a) shows the numerical estimates for several critical exponents for multiple
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dimensions. As one can see, the results approach mean-field values converge to mean-field
predications as the dimension approaches six. This is expected because as the dimension
increases, it is more accurate to average fluctuation instead of characterize the pair interac-
tion individually. Moreover, Fig 3(b) shows the RG method is accurate in describing a wide
variety of experiments. In order to further test the theory, simulation data is plotted as the
avalanche distribution. Using the theoretical calculations above, the critical exponents in 3
dimensions are as follow:

Figure 5: Avalanche size distribution in 3 dimensions integrated over the external field. The

system size is 3203 and the disorders are 4.0, 3.2 and 2.6. Inset: a scaling collapse of the curves in

3 dimensions using the functional form Eq. 13.12

In Fig 4, the critical exponents are obtain by using a scaling collapse for different curves.
The scaling form is an integrated form12 of Eq. 13

Dint(S,R) ∼ S−(τ+σβδ)D
(int)
+ (Sσ|r|) (21)

where D
(int)(X)
+ , X = Sσ|r| is a scaling function. Far from the critical point, we observe the

power law S−0.23. The scaling collapse yields the following exponents values, compared to
the mean-field calculation

Table II: Critical exponents in 3 dimensions

Exponents values RG methods Mean Field

τ 1.60 ± 0.06 1.5

1/σνz 1.75 ± 0.07 2

Fig 4 not only provides consistencies between the model and numerical results, but also
confirms the fact mean-field approximation is a valid method to model this non-equilibrium
system. With the power law for the disorder R = 2.25 and increasing magnitude of avalanche
sizes, one concludes that Barkhausen noise is a disorder induced critical point where
the tuning parameter is the disorder value, R.
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III. CONTROVERSY

Despite the self-consistent theory claiming the Barkhausen noise is a disorder induced crit-
ical point above, other arguments have been raised to interpret Barkhausen noise differently.
In Ref [13], J. S. Urbach, et al argued that Barkhausen signal is a self-organized criticality.
The argument starts with the observation that Barkhausen noise is strongly affected by a
long-range demagnetization field. This effect included to a model of interface depinning will
significant change the model behaviors. Interfaces here correspond to the domain walls of
flipping spins. Demagnetization results from the magnetic fields from the rest of the spins in
the systems. After an increasing field is exerted on an domain interface, the magnetic field
should decrease the effective magnetic field at the domain interface. The demagnetization
then increases until the effective field is weak for the interface to be pinned down again.

The effect of the long-range demagnetization field can be confirmed through the autocor-
relation of the avalanche distribution sequence.13 During an increase in external magnetic
field, a domain wall moves with flipping spins. Meanwhile, the effective field on the domain
walls should be decreased. The following event, therefore, is expected to be of a less magni-
tude when the external field is increased so that the effective magnetic field changes the sign
again, which is a consequence of peak repulsion. Therefore, an autocorrelation13 is useful to
determine the claim above

Figure 6: Experimental results on samples containing 30 % Fe, 45 % Fe and 25 % Co of avalanche

size that follow a fitting line of P (A) ∝ A−αexp(−A/A0). Inset: normalized autocorrelation func-

tion for the experimental Barkhausen noise.13

The dip at the origin indicates avalanches to repel from each other.13 A numerical result
was also presented in Ref [13].
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Figure 7: Numerical results for avalanche size probability the local force and global force methods.

Inset: normalized autocorrelation function for each model.13

The effect of demagnetization is modeled using a global force, as indicated in Fig. 5, in
the form as Hi = H − ηM where η describes the strength of demagnetization field. Local
force is then modeled as the local magnetization field, corresponding to disorder in previous
methods. As shown in Fig. 6, the addition of demagnetization field produces another dip
in simulation, showing that avalanches tend to repel in time series. Local force, on the
other hand, does not result in such a dip. One can conclude that the presence of long-range
demagnetization field implies self-organized criticality instead of a disorder induced critical
point.

IV. CONCLUSION

From two individual research projects above, different approaches and claims have been
made to Barkhausen noise. Both provide consistent numerical and experiment results.
Therefore, it is possible that not all ferromagnets behave the same way under varying exter-
nal fields. For hard ferromagnets and some rare materials, where the microscopic structure
limits the formation and motion of domain walls, the first method using RG approach and
mean-field calculation is more accurate. For soft ferromagnets in the second method, the
depinning model of domain wall is more appropriate for experimental studies. There are
numerous promising work to be done in the future. Self-consistency argued by the first
method using RG approach and mean-field calculation demands the similar behaviors of
other systems within the same universality class. For example, one can study the impurities
from solids’ deformations under tensile stress using the same approach. Similar to the second
method, other ferromagnet materials could be studied. We should expect a wide application
for both approaches and investigate the physical details on the regimes where each model
applies.
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