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Abstract

The spreading of epidemics in complex networks has been extensively studied in

the last few decades. Depending on the nature of the disease and the network it

spreads on, there are different critical behaviors. In this essay I provide a brief

introduction to the study of complex networks and the susceptible-infectious-

susceptible(SIS) epidemic model. I discuss the different critical behaviors when

SIS model is applied to exponential network and scale-free network. The exis-

tence of non-zero epidemic threshold in exponential networks and the lack of

such threshold in scale-freee networks can help understanding computer virus

epidemics.
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1 Introduction

The study of networks has a long history and can be dated back to Leonard Euler’s

study of Königsberg Bridge Problem in 1736. Later on people developed a language

called graph theory to describe the properties of networks. Starting in the 1950s, a

growing interest in quantitative methods in sociology encourages people to borrow,

or adapt graph theory for social network analysis. Until now, many social, biological,

and communication systems can be properly described by complex networks whose

nodes represent individuals or organizations and links mimic the interactions among

them. Interesting behaviors of epidemics spreading has been studied in metabolic

networks, food networks, and most importantly, the Internet and world-wide-webs,

because they are of immense technical and economical value.

Network analysis is powerful because of its breadth. By abstracting away the

details of a problem and mapping it onto a network, we can describe the impor-

tant topological features with a clarity that would be impossible were all the details

retained[1]. Since all the results for one network model is general, we can apply

them to a special problem for useful information - which is why network analysis has

spread beyond its original domain of pure mathematics, and become highly active in

engineering, biology, sociology, and computer science.

However, a real world network usually contains too much details and could be hard

to describe. Strogatz listed six complications in his work[2]: structural complexity,

network evolution, connection diversity, node diversity, dynamical complexity, and,

what’s more, these complications can influence one another1. Naturally, an approach

to such a complex network problem is to assume only one of them is important and the

others can be ignored. This assumption must be reasonable, though. For example,

in this essay I consider an epidemic model and assume all the networks are static,

because the spreading of this disease is very quick comparing with the network’s

evolution over time.

In its simplest form, a network is a set of discrete elements (called vertices, points,

11. Structural complexity: the wiring diagram could be an intricate tangle. 2.Network evolution:
the wiring diagram could change over time. 3. Connection diversity: the links between nodes could
have different weights, directions and signs. 4. Dynamical complexity: the the nodes could be
nonlinear dynamical systems. 5. Node diversity: there could be many different kinds of nodes. 6.
Meta-complication: The various complications can influence each another. Cited from[2]
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or nodes), and connections (called lines, edges, or links). The simplest characteristic

of a vertex in a graph is its degree, that is the number of its nearest neighbors. In

physics this is often called connectivity (denoted k). Knowing connectivity of a vertex

is one way to tell how important it is in a network.

Vertices linked by edges form paths. The concept of a path is a sequence of edges

which connect a sequence of vertices. A connected network is such a network that

every vertex can be reached by any other vertex through a path. In a disconnected

network this is impossible, because there are distinct components that forbids some

vertices to reach an arbitrary vertex in the network. A loop (simple cycle) is a closed

path visiting each its vertex only once. By definition, trees are graphs without loops.

A network can be described by adjacency matrix A. For a simple graph with

vertex set V, the adjacency matrix is a square V × V matrix A such that its element

Aij is 1 when there is an edge from vertex i to vertex j, and 0 when there is no edge.

The diagonal elements of the matrix are all zero, since edges from a vertex to itself

(loops) are not allowed in simple graphs.

By adding features to simple graphs, we can evaluate more complicated systems.

If we add weight to links, the elements of the adjacency matrix can take a range of

values, instead of being binary. Also we may add directions to each link, and the

adjacency matrix will be no more symmetric. Sometimes we need to model a system

using bilayer or multilayer networks. In this case, the interactions are not only within

a layer but also between different networks.

In the remainder of this essay, I will briefly introduce study of complex networks

in section2, and talk about standard models of epidemics in section3. In section4,

I show the different results on applying SIS epidemic model to homogeneous and

inhomogeneous networks.

2 Two main groups of complex networks

Complex networks can be classified in two main groups, depending on their con-

nectivity properties: the exponential network, which is homogeneous, and scale-free

network, which is inhomogeneous.
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2.1 Exponential network

The exponential connectivity network, or exponential network, is probably the most

studied network. As its name suggests, the nodes’ connectivity distribution (the prob-

ability P(k) of finding a node connected to other k nodes) is exponentially bounded.

Random graph model is a typical example.

According to Erdös and Rényi[3], to form this network, we start with n vertices,

so that there are
(
n
2

)
possible pairs of vertices. To build a graph with N edges, we

choose N edges from all these possible edges. Define p as the probability of finding

an edge between distinct pairs of vertices. The probability is described by binomial

distribution:

Pr(N) =

( ( n

2

)
N

)
pN(1− p)

(
n

2

)
−N

(1)

We can define the mean value of N, and the mean connectivity of a vertex with p

〈N〉 =
( n

2

)
p, c ≡ 〈k〉 =

〈N〉
n/2

= (n− 1)p (2)

the probability P(k) of finding a node connected to other k nodes

P (k) =
( n− 1

k

)
pk(1− p)n−1−k (3)

In large n limit, we obtain a Poisson distribution

P (k) = e−c
ck

k!
(4)

2.2 Scale-free network

Scale-free networks exhibit a power-law connectivity distribution:

P (k) ∼ k−γ (5)

here, the parameter γ must be larger than zero to ensure a finite average con-

nectivity 〈k〉. For 2 < γ ≤ 3 this fact implies that each node has a statistically

significant probability of having a very large number of connections compared to the
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Figure 1: Exponential and Scale-free networks, cited from[5]. Both contain 130 nodes
and 215 links (〈k〉 = 3.3). Red nodes are the ones with highest number of links;
green nodes are their nearest neighbors. a, The exponential network is homogeneous:
most nodes have approximately the same number of links. b, The scale-free network
is inhomogeneous: a few nodes have large number of links, while the majority of the
nodes have only one or two links.

average connectivity of the network[4].

Figure2.2 is an illustration of the two typical networks. In the exponential network

only 27% of the nodes are reached by the five most connected nodes, in the scale-free

network more than 60% are reached[5]. It is clear that the connected nodes are very

important in scale-free network.

One special case of scale-free network is the Barabási-Albert (BA) model. In

this model, P (k) ∼ k−3. Several natural and human-made systems, including the

Internet and the world wide web, are approximately scale-free and contain few nodes

with unusually high connectivity compared with other nodes in the network[6]. The

γ factor for the Internet is about 2.5[7].

3 The susceptible-infectious-susceptible (SIS) model

Epidemic models are many, but in this essay we consider only one of them: The

susceptible-infectious-susceptible (SIS) model. It is predominantly used for sexually

transmitted diseases(STDs): people can be cured and then repeat infections. It is
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different from the susceptible-infectious-recovered (SIR) model, which is appropriate

for infectious diseases that confer lifelong immunity.

To describe this progress we neglected many details, but this model has been

proved successful for a long time.

dS

dt
= gI − φS,

dI

dt
= φS − gI,

(6)

In these equations, S, I refer to the number of susceptible and infectious individ-

uals, respectively, in a population of size N. Here we assume only two discrete states

exist. These states completely neglect the details of the infection mechanism within

each individual. g is the rate of recovery, φ is the force of infection, which tells us

the rate at which susceptible individuals become infected. This parameter is a func-

tion of the number of infectious individuals. It also contains information about the

interactions between individuals that lead to the spreading of epidemics[8].

In reality population usually don’t mix at random with infectious individuals, but

if we assume it to be true, then each individual has an equal chance of coming into

contact with one another, the force of infection is then given by:

φ= effective number of contacts per unit time

×transmission rate × proportion of contacts infectious

We will use this model and discuss its spreading in exponential and scale-free

networks.

4 The spreading of epidemics

Romualdo Pastor-Satorras and colleague[7] defined an effective spreading rate to de-

scribe the epidemic transmission in complex network: At each time step, each sus-

ceptible node is infected with probability ν if it is connected to one or more infected

nodes. At the same time, infected nodes are cured and become again susceptible with

probability δ, defining an effective spreading rate.

λ =
ν

δ
(7)

We can always rescale the time, so without loss of generality, we can set δ = 1.
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4.1 Epidemic spreading in exponential network

As we already seen in Figure2.2, exponential networks can be considered homoge-

neous. We further assume all individuals are equivalent, irrespective of their con-

nectivity, each individual has the same number of linkes(k ' 〈k〉), the connectivity

fluctuations are very small(〈k2〉 ∼ 〈k〉), also the mixing is homogeneous. Thus, we

can use mean field theory to calculate its behavior. Define total prevalence ρ(t), which

is the density of infected nodes present at time t.

∂tρ(t) = −ρ(t) + λ〈k〉ρ(t)[1− ρ(t)] (8)

Here we use this model for an endemic state with a dynamically stationary value

for the density of infected individuals. That is to say ρ(t)� 1.

Assume infected individuals become healthy by a unit rate, the first term in the

equation above gives the value. The second term represents the density of newly

infected individuals, following the idea of infection force in section3.It is proportional

to the infection spreading rate (λ), number of links from each individual (〈k〉), and

the probability that a given link is connected to a healthy individual ([1-ρ(t)]). The

ρ(t) in second term is because of the homogeneous mixing hypothesis, which is indeed

equivalent to a mean-field treatment of the model[4].

There is no birth rate or natural death rate in this equation, because we assume

the time scale of the disease is much smaller than the lifespan of individuals.

After imposing the stationarity condition ∂tρ(t) = 0, we obtain the equation for

the behavior of the system at large times,

ρ[−1 + λ〈k〉(1− ρ)] = 0 (9)

for the steady state density ρ of infected nodes. This equation defines an epidemic

threshold λc = 〈k〉−1, and

ρ = 0, if λ < λc (10)

ρ = (λ− λc)/λ, if λ ≥ λc (11)

Thus, SIS model in homogeneous network predicts the existence of a nonzero epi-
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Figure 2: Schematic phase diagram for the SIS model in homogeneous networks, cited
from[4]. It is clear the epidemic threshold is of a positive value. When the value of λ
is larger than the threshold, the infection spreads. Otherwise the infection dies fast.
The SIS model in this network is going through an absorbing-state phase transition
at the threshold. It separates two phases: active, or infected phase, from absorbing,
or healthy phase.

demic threshold λc, proportional to the inverse of the average number of neighbors of

every node, 〈k〉, below which the epidemics always dies, and endemic states are im-

possible. A sketch of such behavior is in Figure4.1. The epidemic threshold separates

infected phase with finite prevalence from healthy phase with null prevalence.

Is this a good prediction for computer virus? Probably not, because the computer

virus data that has been observed has long lifetimes and very small prevalence. In

Figure4.1, it corresponds to a value of λ that is infinitesimally close to the threshold.

In fact, if we consider the propagation of computer virus, the network they spread on

is a scale-free one. Virus prefer computers that are actively communicating to others

because they exchange more data.

4.2 Epidemic spreading in scale-free network

When moving from exponential network to scale-free network, we can no long assume

the connectivity fluctuation is negligible. Thus, for an infected node ρk(t) at time t

with connectivity k, we can write

dρk(t)

dt
= −ρk(t) + λk[1− ρk(t)]Θ[{ρk(t)}] (12)

here in the first term we also consider a unitary recovery rate without losing

generality. The second term is almost the same as in homogeneous case, and considers
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the probability that a node with k links is healthy ([1-ρk(t)]) and get infected by a

neighbor. This probability is proportional to the infection rate (λ), the number of

links for this node (k), and the probability Θ[{ρk(t)}] that any given link points to

an infected node.

Assume Θ is a function of the partial densities of infected nodes {ρk(t)}. In the

steady state, the ρk are functions of λ. Thus, the probability Θ is also an implicit

function of λ, and by imposing the stationarity condition, we obtain

ρk =
kλΘ(λ)

1 + kλΘ(λ)
(13)

which is reasonable, because this equation means as connectivity of a node gets

higher, the probability to be in an infected state rise as well. As the network is no

longer homogeneous, the computation of Θ(λ) for a general complex network can be

difficult. For a random scale-free network, the probability that a link points to a node

with s connections is equal to sP (s)/〈k〉[7].

Θ(λ) =
1

〈k〉
∑
k

kP (k)ρk (14)

Since ρk is on its turn a function of Θ(λ), we obtain a self-consistency equation

that allows to find Θ(λ) and an explicit form. Finally, we can evaluate the order

parameter (persistence) ρ using the relation. In the limit of small Θ(λ), for any

scale-free connectivity distribution.

ρ =
∑
k

P (k) (15)

To find the epidemic threshold in this case, just noticing λc is the value of λ above

which it is possible to obtain a nonzero solution for Θ(λ). In fact, we obtain

Θ(λ) =
1

〈k〉
∑
k

kP (k)
kλΘ(λ)

1 + kλΘ(λ)
(16)

where Θ(λ) is a function of λ only. The trivial solution is always satisfying the

equation. As for non-trivial result, note a non-zero stationary prevalence (ρk 6= 0)

is obtained when the right-hand-side and the left-hand-side of the above equation,

expressed as function of Θ(λ), cross in the interval 0 < Θ(λ) ≤ 1. A non-trivial

solution is thus allowed, which corresponds to
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Figure 3: Total prevalence ρ for the SIS model in a Barabási-Albert network (full
line) as a function of the spreading rate λ, compared with the theoretical prediction
for a homogeneous network (dashed line), cited from[7]

d

dΘ
(

1

〈k〉
∑
k

kP (k)
kλΘ(λ)

1 + kλΘ(λ)
)|Θ=0 ≥ 1 (17)

The epidemic threshold λc when left hand side and right hand side are equal, and

we have ∑
k kP (k)λck

〈k〉
=
〈k2〉
〈k〉

= 1, → λc =
〈k〉
〈k2〉

(18)

This results implies that in scale-free networks with connectivity exponent 2 <

γ ≤ 3, for which 〈k2〉 → ∞ in the limit of a network of infinite size, we have λc = 0.

An analytical result for Barabási-Albert network is showed in Figure4.2. This

network is a toy model of scale free network, and has a connectivity distribution of

P (k) ∼ k−3. The result shows the absence of epidemic threshold or critical point in

the model. Compare with the non-zero epidemic threshold in exponential network,

it is clear that scale-free networks are prone to the spreading of epidemics, regardless

of spreading rate. Although Barabási-Albert network is of γ = 3, it has been proved

that this result can be generalized for networks with 2 < γ ≤ 3, since the Internet

has γ = 2.5, it shares the same critical behavior as BA network[7].



The Spreading of Epidemics in Complex Networks 11

5 Conclusions

As for epidemic spreading on complex networks, the connectivity fluctuations of the

network play a major role by strongly enhancing the infection’s incidence. Expo-

nential networks have homogeneous connectivity, and nodes in a network are almost

equivalent. In scale-free networks, the fluctuation of connectivity could be very large,

and the network has inhomogeneous connectivity. Technological networks, such as

the Internet and the world-wide-web are scale-free networks.

Of course, the epidemiological picture in this essay is an simplified one. The

evolving of networks is completely ignored, but in reality pages and links are created

and destroyed in the Internet every second. Still, we can see that scale-free networks

are in fact very weak in the face of infections. The lack of epidemic threshold in

scale-free networks indicates that infections in such networks can increase proliferate,

no matter what the spreading rate is. It is worth mentioning that although I only

reviewed the SIS model on epidemics spreading, the SIR model, when applied to

exponential and scale-free networks, gives the same result[9].
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