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Abstract

The BKT transition is a topological phase transition that arises naturally from the
XY spin model, a common toy model that describes a variety of 2D systems. We derive
the behavior of the two-point correlation function via low-temperature expansions, and we
explore the critical behavior using the renormalization group. It can be shown that that
above the critical temperature for the BKT transition, but not too much higher, defects
in the form of topologically-charged vortex pairs spontaneously are created, giving rise to
quasi-long-range order. Experimental evidence has been found for this in an optically trapped
rubidium gas.
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Introduction

The Berezinski-Kosterlitz-Thouless (BKT) transition is a phase transition that occurs
in many two-dimensional systems such as nematic liquid crystals, superconducting arrays,
superfluid helium films, etc. The BKT transition is unique in that the long-range behavior
of the system is encoded into the topology of the system. As such the BKT transition is
often classified as a topological phase transition. One of the main results of undergoing such
a transition is the emergence of topological defects, such as a topological charge excitation
known as a vortex. Experimental evidence for the BKT transition is quite strong, as several
experiments have confirmed aspects of the theory such as the existence of topological defects,
and the critical values from renormalization group (RG) analyses.

2D Classical XY Model [3][4]

The simplest toy model that exhibits the BKT transition is the XY model which
is a spin model where spins are localized onto lattice points in two dimensions and their
interaction length is restricted only to nearest-neighbor interactions. The spins are allowed
to point in any direction within the XY plane, hence the name XY model. The Hamiltonian,
H of such a system with no external field can be written as

H = −J
∑
〈ij〉

cos(θi − θj) (1)

where J refers to the coupling constant of any particular spin and θi refers to the angle a
spin points at lattice point i. Implicitly we assumed that the magnitude of each of the spins
is unity. For low temperatures, one can see from the Hamiltonian that the nearest-neighbor
spins would prefer to point in the same direction, making changes in angle small. Thus in
this limit, one can Taylor expand about the minimum energy configuration and take the
continuum limit.

H ≈ J

2

∑
〈ij〉

(θi − θj)2 =

∫
J

2
(∇θ(r))2 dr (2)

One quantity of interest is the two-point correlation function 〈S(0)S(r)〉, which reveals how
ordered the system is.
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〈S(0)S(r)〉 = Re〈eiθ(0)−θ(r)〉 (3)

∼ Re

(∫
d2θ

(2π)2
e(i[θ(0)−θ(r)])[J2∇θ2]

)
(4)

One can calculate this correlation function by Fourier transforming to momentum space and
taking the small k limit.

θ(r) =

∫
dk

(2π)2
θ(k)e−ik·r (5)

θ(r)− θ(0) =

∫
dk

(2π)2
θ(k) [1− cos (k · r)] (6)

Substituting these values into the original Hamiltonian and then completing the square inside
the integral part of the correlation function, one finds that

〈S(0)S(r)〉 ∼ exp

[
−
∫ |r|−1

d2k

(2π)2

1− cos(k · r)
βJk2

]
(7)

Only the first term survives because one of the dimensions in d2k is implicitly integrating
over the angles. One thus can obtain a correlation function that scales in the following way:

〈S(0)S(r)〉 ∼
(

1

|r|

)T/2πJ
(8)

Since the scaling relation above shows that the two-point correlation function decays
with distance, there should be no long-range order. However, one should also note that
this function decays algebraically, not exponentially like the Ising model above the critical
temperature (no long range order in that scenario). One can interpret these findings as the
following: for the low temperature approximation there is a phase transition, now known
as the BKT transition, that has occurred, but that BKT phase transition is somewhat
different from that of the Ising magnetic transition. As such, it is commonly said that the
low-temperature phase transition of the 2D XY model gives rise to a phase that possesses
quasi-long range order.

When calculating the two-point correlation function in the high-temperature limit,
one cannot use the same approximations as the low-temperature limit. The Boltzmann
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factors for this limit are exp [βJ cos(θi − θj)]. From the functional form of this Boltzmann
factor, one can interpret the high-temperature limit as also being the small J limit, and as
such one can expand the Boltzmann factor about small J to lowest non-trivial order. The
two-point correlation function (excluding trivial constant values of energies) will be

〈S(0)S(r)〉 ∼
∫
d2θ

2π
cos(θ0 − θr)

∏
ij

J cos(θi − θj) (9)

∼
[∫

d2θ

2π
J cos2(θ0 − θr)

]|r|
(10)

∼ exp

(
|r|

ln(J/2)

)
(11)

This correlation function gives an exponential decay for high temperature spin systems as
expected, and as such in this regime, the system has true long-range order. One can conclude
that the 2D XY model has two phase transitions: one at low temperatures that gives rise
to quasi-long-range order, and one at high temperatures that gives rise to true long-range
order.

Topological Phase Transition [3][4]

For low temperatures, one can minimize the Hamiltonian with respect to the func-
tional θ(r) to get Laplace’s equation.

∇2θ(r) = 0 (12)

The solutions to this equation, other than the trivial linear and constant solutions, give rise
fields that can be thought of as emanating from a charge (or defect) of some kind. One of the
boundary conditions for this field comes from looking at the continuum limit of the change
in the θ(r) functional.

∆θ =

∫
∇θ(r)dr (13)

If one integrates over a closed curve, one must get 2πq, where q is an integer, and can be
thought of as the ”charge” that gives rise to the field that solves equation (12). From this
analysis, one can see that the ”charge” gives rise to vortices which cannot be continuously
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Figure 1: The positively and negatively charged vortices that come about above Tc for the
BKT transition. Each of the arrows represents the order parameter.

deformed to the uniform spin state which represents q = 0. As such, one can interpret
this vortex to be topological in nature, with the topological charge being the mathematical
winding number. Due to the integer property of winding number, one can see that ∇θ(r)
scales inversely with distance. Using this fact, one can find from the 2D continuum form
of equation (2), that the energy of this topological defect with system size L that circulates
with radius a is

Evortex = Ecore +

∫ 2π

0

∫ L

a

J

2
(∇θ(r))2 drdφ (14)

= Ecore + πJq2 ln

(
L

a

)
(15)

The second term, which represents the energy of distortions away from the core can also
be thought of as the energy for vortices to spontaneously exist. To investigate the phase
transition, one can look at the partition function excluding the constant of the core energy.

Z ≈
(
L

a

)2

e−βπJ ln(L
a ) (16)

This factor of
(
L
a

)2
comes from the multiplicity, or entropy, of different configurations that

a vortex of area a2 can take in a system of size L2 in 2D. The free energy is then
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F ≈ πJ − 2T ln

(
L

a

)
(17)

where the first term is the energetic contribution to the free energy which acts to suppress
vortex formation, while the second term is the entropic contribution, which acts to promote
vortex formation.

At low enough temperatures, one can see that vortex formation is not spontaneous,
but at higher temperatures, [but still low enough to use the approximation in equation (2)]
one can see that vortices will form. The critical temperature, at which this will take place
is where the free energy vanishes, which is at Tc = πJ

2
, and its critical coupling constant

will be Jc = 2
π
. However, not all kinds of vortices can spontaneously exist as the energy

of the vortex diverges as the system approaches the thermodynamic limit of L → ∞. It is
only when a vortex couples with another vortex with a topological charge of the opposite
sign can one remove the L dependence in the energy and thus allow the energy to be finite.
The low-temperature result above Tc of the BKT transition can thus be summarized as the
spontaneous formation of a gas of topological “dipoles,” sometimes referred to as a Coulomb
gas. It is through this result that shows how the XY model can attain quasi-long range
order.

Rescaling and Renormalization [1]

While the previous argument for the topological phase transition does provide much
of the correct phenomenology, the argument is not exactly correct since it does not account for
any interaction energies between vortices once the system has reach the critical temperature.
The partition function for such a system will be the same partition function in equation (16),
(defined now as Zsw) except now multiplied by the partition function for the interactions
(defined now as Zint). Zsw is analytic everywhere so by that fact alone, it would initially
seem as though there would be no phase BKT transition for low temperatures given the
argument from the previous section. However one ultimately finds that Zint may become
non-analytic at certain temperatures, which implies reconciles the phenomenology with the
formulation. The partition function for the interactions can be found by considering a vortex
with vorticity and by using several vector calculus identities, giving an expected result: an
exponential of a 2D Coulombic Hamiltonian that is non-analytic at r = 0.

Zint = e
−β

∑
Ecore−4π2J

∑ qi
qj

ln |r|
(18)

However, if one considers the model where there are multiple topological dipoles,
there will be multiple kinds of interactions between multiple sets of dipoles. If one takes
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a coarse-grained view of the system, one can think of one set of the net interaction can
be thought of as shielding another set of dipoles from the potential from the rest of the
dipoles. This would mean that the coupling constant, J would rescale into Jeff, which
incorporates the shielding effect. One can obtain the interaction energy using various lowest-
order perturbation theory calculations and the result that one gets will be

J−1
eff =

[
J − 4π3J2y2

0

∫ ∞
1

x3−2πJdx

]−1

(19)

≈ J−1 + 4πy2
0

∫ ∞
1

x3−2πJdx (20)

where y0 comes from the terms involving the core energy and can be thought of as the fu-
gacity, and x is now the variable used to rescale r for short distance 2D Coulombic potential
divergences. To get a recursion relation from this integral, one can use a renormalization
procedure of breaking the integral up into two integrals: one that represents large (conver-
gent) length scales and that represents small (divergent) length scales. One can then rescale
the coupling constant J to incorporate the divergent part of the integral.

J−1
eff = J̃−1 + 4π3y2

0

∫ ∞
e`

x3−2πJ̃dx (21)

The term e` is the arbitrary length cutoff that separates the short length scales and the long
length scales. To get this previous integral into the original form of equation (20), one can
rescale y0 to be y0 = e(2−πJ)`y0 such that all length scales x become x

e`
.

J−1
eff = J̃−1 + 4π3ỹ2

0

∫ ∞
1

x3−2πJ̃dx (22)

One can take several infinitesimal iterations of renormalization such that e` ≈ 1 + `. Then
one can formulate an explicit recursion relation in terms of two differential equations to
lowest non-trivial order.

dJ−1
eff

d`
= 4π3ỹ2

0 (23)

dỹ0

d`
= (2− πJ)y0 (24)
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Figure 2: The RG flow diagram for the XY model (far from the critical point)

From equation (24) one can see that the critical value Jc = 2
π

is consistent with the renor-
malization analysis and thus must be a fixed point on the RG flow diagram. One can also
see that for small (large) J the slope of the flows for y0 are negative (positive), which implies
that the y0 in that region is relevant (irrelevant). Flows for J−1 will always tend towards
∞ and thus are irrelevant. A summary of the results is described in the following RG flow
diagram in Figure 2. To observe the behavior near the critical point, one can find three
differential equations for the point t = J−1

eff − π
2

and for the value of c = t2 − π4y2
0.

dt

d`
= 4π3y2

0 (25)

dỹ0

d`
=

4

π
ty0 (26)

dc

d`
= 2t

dt

d`
− 2π4dy0

d`
= 0 (27)

From these equations, one can show that c is a conserved value near the critical point on
one side, and from Figure 2 one can see that it changes sign but not magnitude as one flows
across the critical point. The point where that crossover occurs is at where c = 0 or when
tc = −π2yc where tc and yc are other critical values. This suggests that the value of yc (which
if one recalls is related to the core energy) shifts the value of of the critical coupling constant
by

J−1 =
π

2
− π2yc (28)
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The temperature dependence of c close to the critical point can be argued to be c = a2(T−Tc)
since the value vanishes at Tc and increases (decreases) as one moves away from the critical
point in the positive (negative) direction. One can then find the functional form of the
critical behavior of the coupling constants for the BKT transition.

Jeff ∼
√
Tc − T (29)

Rubidium Gas Experiments [2][5]

In 2006, Hadzibabic et. al experimentally tested the value of the critical exponent of
the two-point correlation function and tested the prediction of topologically charged vortex
pairs. The experiments used a cold bosonic gas of rubidium atoms that were known to
undergo a superfluid phase transition that could be explained using the XY model and
the BKT transition. For the superfluid transition, the critical exponents have already been
determined theoretically to be 1/4 below the transition and 1/2 above the transition.

The goal of the experiments was to try to get an interference pattern which will
indirectly give information about the correlation functions. It can be shown that interference
fringes with the greatest amount of interference, and thus the greatest contrast, consist of
waves (in this case atoms) that have the greatest coherence, which in the optical case means
that the waves are closest to the “ideal” system of having the same wavelength but different
phases. A system that is more coherent can be thought as being more correlated, and it can
be shown that the correlation function g(r, 0) = 〈S(r), S(0)〉 is related to coherence via an
equation for the contrast in the interference fringe

〈C2(Lx)〉 =
1

Lx

∫ Lx

0

g2(r, 0) dx ∼
(

1

Lx

)2α

(30)

where C is a measure of the full contrast, and Lx is the length scale of the system along the
x̂ direction. One can obtain the full contrast by averaging out all of the locals contrasts,
c(x) weighted by their phase, ϕ(x), where both values can be directly measured.

C(Lx) =
1

Lx

∫ Lx/2

−Lx/2

c(x)eiϕ(x) dx (31)

The experimental setup first included rubidium atoms that were first brought to the
gas phase using radiation. The gas was first split and then trapped into two different clouds
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Figure 3: a) The graph of the functional form of the correlation function. The blue section
corresponds to temperatures above Tc and the orange corresponds to temperatures below
Tc. The dashed lines correspond to the theoretical result. b) Value of the critical exponent
α, where the dashed lines refer to the theoretical predictions

via a 1D optical lattice. After the gases reached thermal equilibrium from Bose-Einstein
condensation, the lattice potential was quickly turned off such that the rubidium atoms were
now allowed to tunnel through to the other atom cloud and thus interfere in the xy plane
with atoms in the other cloud. Hadzibabic et. al raised the temperature by tuning the
frequency of the radiation and observed the interference pattern with a CCD detector.

The results for the behavior of the correlation function are presented in Figure 3.
The average of the full contrast squared looks as if it fits well with the theoretical value,
but the critical exponent above Tc had much more noise. There are also larger error bars
around where one achieves a higher temperature, and nontrivial ones in below Tc. One issue
noted by Hadzibabic et. al is that for very low temperatures, the critical exponent should
be 0 due to Bose-Einstein condensation, but this is not observed. Their explanation for this
is due to crossover phenomena from residual heating of the apparatus, but if that were not
the case, then the accuracy of the entire experiment would be in question. The result of the
vortex experiment came from the shape of the interference pattern. From an earlier paper by
Stock et. al, it was shown that topological defects in 2D Bose-Einstein condensates formed
dislocations [6]. The interference that Hadzibabic et. al found is shown in Figure 4, which
clearly shows dislocations, and thus they concluded that topological defects were formed.
They were able to resolve a single vortex as long as it was located close to the center of the
gas cloud. They were not able resolve the charge of the vortex which means that they could
not yet prove that the topological defects had to have come in pairs.
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Figure 4: a) The functional form of the correlation function. The blue section corresponds
to temperatures above Tc and the orange corresponds to temperatures below Tc. The dashed
lines correspond to the theoretical result. b) Value of the critical exponent α, where the
dashed lines refer to the theoretical predictions
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