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The connection between environmental changes and cloud formations remains an

important, but poorly understood, component of climate research. Much of the

difficulty in describing cloud formation lies in the multi-scale character of the under-

lying features of cloud formation. Recently, both observations of cloud formation via

satellite and detailed simulations of cloud dynamics have suggested the transition

between clear and cloudy skies carries signatures of a phase transition. These sig-

natures include universal power law scaling, connections to predator-prey dynamics,

and singularities in the response to external perturbations. I explore three investi-

gations into these discoveries and discuss the implications of their assumptions and

their results.
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FIG. 1: Breakdown of the energy budget of sunlight incident on Earth’s surface. Part of the

sunlight is reflected by the clouds and atmosphere, while much of the remaining warms Earth’s

surface. Part of this energy then vaporizes water and induces convection, producing more cloud

cover. This complex relationship is part of what makes climate predictions difficult. Reproduced

from ref. [3].

I. INTRODUCTION

A lack of understanding of the conditions giving rise to widespread cloud formation
remains a significant obstacle in the study of Earth’s climate. The accurate prediction of the
formation of clouds is critical for accurate predictions of climate change lies fundamentally
due to Earth’s interaction with the sun. When exposed to solar radiation, an object floating
in space will absorb a certain percentage of the incoming light as heat. As the object
warms, the temperature will rise until the energy flux of the black body radiation matches
the incoming radiation. The greater the fraction of radiation is absorbed by the object,
the higher the temperature must be in order to balance the energy flux into the system
and keep the system in equilibrium. The same logic applies to the Earth, but in a more
sophisticated way. Light incident on Earth’s atmosphere is partially reflected by clouds in
the atmosphere, as well as objects on the surface. Likewise, the black body radiation of
the Earth is partially absorbed by molecules in the atmosphere and partially radiated back
to Earth, otherwise known as the “greenhouse effect.” Some of the incident energy also
vaporizes water, becoming the latent heat of the formation of water vapor which may go on
to form clouds. Some energy also powers convection cycles, which may further affect cloud
formation. The details of this process are carefully studied [1, 2] and illustrated in Fig. 1

Although the effects of clouds on the energy budget represent an important component,
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it remains difficult to predict processes of cloud formation. Uncertainty in the sensitivity of
cloud formation to environmental changes is currently the largest source of error in climate
modeling. One numerical study conducted 15 model climate calculations that attempt to
predict annual climate change, and found that the predictions for cloud response to climate
change both had the largest variations between models, as well as the largest deviations
from observed changes on Earth [4]. Accurate simulations of climate change depend on
improvements to our understanding of cloud formation.

The difficulty in modeling cloud formation arises from its multi-scale character. Features
on the order of 10s of meters are important for accurate simulations, although interesting
features may exist on length scales of 1000s of meters [5]. Parametrizing and coarse graining
these features may be difficult as well. For example, it is difficult to generate determinis-
tic models for cloud formation that can reproduce spacial variations in cloud formations.
Stochastic techniques must be used instead, in order to capture uncertainties in behavior
below the length scales simulated in experiment [6]. Additionally, the large scale of atmo-
spheric effects means no controlled, laboratory-based experiments are possible. Researchers
must gather information from a combination of uncontrolled observations of Earth’s at-
mosphere and detailed, but computationally expensive, simulations based on fundamental
physics such as the Navier-Stokes equations.

The multi-scale character of the cloud formation has motivated some researchers to ex-
plore the possibility of applying statistical mechanics to understanding the large-scale behav-
ior of clouds. Although work in this field has not yet been made rigorous, some simulations
and observations suggest that ideas of critical phenomena may be relevant to cloud forma-
tion. Note this critical behavior is distinct from the well-established first-order transition
that occurs when clouds condense into precipitation. Instead, this transition refers to the
larger-scale transition that occurs when clouds coalesce or precipitate over 100s to 1000s
of kilometers. Observations and calculations have found emergent behavior that is sugges-
tive of behavior that is described in statistical mechanics. In particular, moist air tends to
sensitive to properties in the atmosphere that cause it to spontaneously form clouds, and
this transition displays behavior reminiscent of universality [7]. Clouds also can form peri-
odic pattens reminiscent of antiferromagnetic order, related to processes turning converting
clouds to rain and back again [5, 8]. The purpose of this paper is to explore some of these
observations and discuss how the process of cloud formation can be connected to phase
transitions. It will also explore how these observations may help in our understanding of
cloud formation in the context of climate modelling.

II. OBSERVATIONS FROM SATELLITE DATA

Peters and Neelin released a study in 2006 finding that satellite images of tropical rainfall
rates exhibited evidence of a phenomenon known as “self-organized criticality,” and that
rainfall rates displayed features that can be described as universal critical exponents [7].
They utilized data available from the Tropical Rainfall Measuring Mission from 2000 to
2005, which utilized microwaves to measure rainfall rate, P , and water vapor, w, cloud
liquid water and sea surface temperature. From these observables, they compute 〈P 〉(w),
defined to be the average P at fixed w over all regions and times over the course of the
mission. The authors found some features of critical transition in these variables.

To motivate studying the critical behavior of this system, Peters and Neelin investigate
the so-called quasi-equilibrium postulate. In some systems, the order parameter of the
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FIG. 2: (Green +) Number of times water vapor, w, was observed over 5 years of satellite data

in the tropics. (Blue ×) same as previous, but only those that were classified as precipitating.

(Red line only) Average precipitation for satellite pixels with that amount of water vapor w. This

demonstrates that the system generally oscillates about the transition point, defined as the point

of water vapor saturation where precipitation tends to occur. Below the peak, evaporation and

convection increase the water vapor until it becomes saturated, then over-saturated. Above the

peak, precipitation is triggered, and the air quickly dissipates the excess moisture through rain.

Reproduced from ref. [7].

system may be coupled to an external driving force such that the system in driven toward
its critical transition whenever it exists in a stable phase. Such systems the system will be
perpetually be near their critical points [7]. The postulate is that the cloud to precipitation
system is such a system [9]. When the air is sub-saturated with water, heat evaporates
water and increases the saturation. The warm, moist air rises and condenses into clouds.
When the clouds become over-saturated, a small event triggers precipitation, which quickly
dissipates the water vapor from the air into liquid water. To confirm this behavior, the
authors histogram the number of times a pixel from the satellite image was at a given
w, and compare it to the average precipitation 〈P 〉(w), reproduced in Fig. 2. The results
demonstrate that the majority of the time, the atmosphere in the tropics is quite close to
the transition to precipitation, consistent with the notion that the state of the system is
attracted to the transition. Thus also implies that the majority of observations of cloud
behavior will be near this transition, and therefore critical phenomena will be relevant.

To investigate whether this transition exhibits critical phenomena, the authors attempt
to fit an asymptotic function of the form

〈P 〉(w) = a(w − wc)β

near the critical transition. Here, wc represents the region-dependent critical vapor density
before precipitation, and a represents a region-dependent constant. The region-dependence
enters because different regions’ temperatures and geological features can impact wc and
the magnitude of the precipitation that is triggered. The process of scaling away these
differences is shown in Fig. 3. By adjusting the plots in a simple, consistent way, the
functional dependence of 〈P 〉(w) shows good data collapse, particularly near and above the
wc transition into precipitation.
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FIG. 3: Process of scaling 〈P 〉(w), the average rainfall as a function of w, vapor density. Left: un-

scaled, raw data. Data shows similar trends, but there are quantitative differences. Middle: w

multiplied by a region-dependent factor (f iw) that sets their transition vapor density the same.

Right: scaling 〈P 〉(w) by a region-dependent value (f iP ) to set the precipitation values approxi-

mately the same. After this scaling process, the functional form of 〈P 〉(w) is similar for all regions

near the critical transition. A power law fit is shown as a solid line. Reproduced from ref. [7].

They also define a susceptibility by χ(w,L) = Ldσ2
P (w,L), where σ2

P is the variance of
the distribution of P across regions and times, L represents the spacial resolution of the
data, and d represents the dimensionality. In their case, they integrate over the height of
the atmosphere (w is the water density per area), therefore d = 2. The value of σP (w,L)
along side 〈P 〉(w) is shown in Fig. 4. Consistent with what might be expected from critical
behavior, this definition of χ(w,L) diverges near the transition point. The resulting power
law fit finds that the same critical exponent β ≈ 0.215 fits all the different regions, varying
between regions by only ±0.02.

To calculate other critical exponents and verify that the data collapse is indeed due to a
critical transition (rather than something like theorem of corresponding states), the authors
perform what they call a “finite size” analysis (although I have issues with this, explained
in the conclusion). Since they cannot vary the system size, they instead vary the spacial
resolution by averaging over blocks of the satellite data. They use what they call the finite
size scaling ansatz χ(w,L) = Lγ/νχ̃(∆wL1/ν). Here, γ and ν are defined analogously to
other transitions, and χ̃ is a scaling function. The results of the analysis are presented in
Fig. 4 (right) and find that γ/ν ≈ 1.54(4). The specifics of how this fitting is performed
is explained in the figure caption. The data collapse near the critical transition is again
suggestive that critical exponents associated with a phase transition are being observed in
the satellite data.

III. MODELS FOR BEHAVIOR

Based on observations of cloud formation similar to Peters and Neelin (reported above),
some work has been done to provide coarse-grained models the reproduce the phase transi-
tion from cloudy to clear atmospheres. If the transition is indeed representative of a critical
point, coarse grained models may be a good representation of large-scale behavior because
shorter scale behaviors are correlated. This intuition motivates the investigation of simpli-
fied models that attempt to reproduce qualitative long-range behaviors, two of which are
presented here.
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FIG. 4: Left: a plot of the scaled order parameters 〈P 〉(w) for two regions (western and eastern

Pacific), along with the power law fit. On a parallel axis, the variance in the order parameter

(among the regions and times considered) is shown, showing a sudden increase reminiscent of the

singularity in the fluctuations near a critical transition. The inset displays the log-log plot of the

power law fit for the all the regions, offset by a constant for easy of plotting. Right: “finite size”

scaling analysis of the transition. Due to noise in w and wp the authors determine the exponents

in χ(w,L) = Lγ/νχ̃(∆wL1/ν) by noting that σ2P ∝ Lγ/ν−d (where d=2) and finding the γ/ν that

products the data collapse near the peak. The inset shows that farther from the w values near the

peak, the data agrees between regions when γ/ν = 0, suggesting the collapse near the transition is

indeed from critical phenomena. Reproduced from ref. [7].

A. Predator-Prey model for clouds and precipitation

The observations of critical-like behavior in cloud formation, together with the observa-
tion that the system tends to be driven towards its critical point, suggests that it may be
possible to devise simplified models that coarse-grain the complicated small-scale degrees
of freedom, yet still capture some of the emergent behavior. Fine-scale (10s of meters)
simulations of the Navier-Stokes equations found that although the cloud formation and
precipitation responses to small perturbations of the environment were complex, the sys-
tems tended to prefer distinct modes of behavior [10]. This emergent simplified behavior
suggests that simplified models may provides an alternative means to reproduce the same
results.

Motivated by these detailed simulations, Koren and Feingold attempted to explain some
of the dynamics of cloud-precipitation transitions using a simplified predator-prey model [5].
The relationship between predators and prey can be modeled by the Lotka-Volterra equa-
tions. These equations make prey growth proportional to prey population and prey death
proportional to predator population. Predator population is proportional to both predator
and prey populations. This produces a cyclic behavior of populations shown in Fig. 5(left).
Of course, many simplifying assumptions have been made in this model. For example, spa-
cial variations of the populations are completely neglected, and external factors such as food
supply for prey and perhaps disease and other harsh conditions are neglected. Nonetheless,
this model has reproduced some qualitative behaviors in a variety of systems [5, 11, 12],
suggesting detail such as disease are not important to capture the qualitative behavior of
the system. This oscillatory behavior is partially reproduced in the detailed Navier-Stokes



7

FIG. 5: Left: population cycle for predator and prey populations for foxes and rabbits (respec-

tively). The populations undergo cycles associated with growth of prey, then growth of predators,

then overpredation and the decline of prey population, then decline of predator population due to

starvation. In this simplified model, the populations are completely cyclical, so as time progresses

the curve follows the same path many times in circles. Populations of the animals are completely

periodic, and phase-shifted with respect to each other. Right: for comparison, the linear water

path (LWP), essentially a measure of cloud height, vs. the rainfall rate, generated by detailed

simulations of the Navier-Stokes equations [10]. In these simulations, the quantities rise and fall

in phase-shifted manner; however, they are not completely periodic, and slowly approach a stable

fixed point. Reproduced from ref. [5].

simulations, as shown in Fig. 5(right).
Based on this similar behavior, and observing that rain tends to “consume” clouds much

like predators consume prey, Koren and Feingold attempt to use simple approximations to
derive a cloud-precipitation model that resembles a predator-prey model like the Lotka-
Volterra equations. Much like the preditor-prey model, the authors’ model neglects spacial
variations in clouds and precipitation. Instead the amount of clouds is represented by a
single variable, H, representing cloud depth, whose growth rate is determined by

dH

dt
=
H0 −H
τ1

+ Ḣr(t− T )

Here, H0 represents the cloud depth the environment drives towards, τ1 represents the time
constant associated with cloud growth, and T represents the delay from processes that
begin precipitation. Ḣr < 0 represents the loss in clouds due to rain. The authors note that
the presence of aerosol, or small particles that act as nucleation sites for cloud particles,
can decrease the tendency of cloud particles to form rain and also affect albedo in climate
models. Thus the authors include it as a separate variable in their simulations. Using
results from the literature, they connect Ḣr to the cloud height, H, and density of aerosol,
Nd: Ḣr(t) = −αH(t)2/c1Nd. Here, α and c1 are constants that depend on temperature and
details of the clouds, which are neglected in the dynamics. A similar procedure for droplet
formation produces the equation

dNd

dt
=
N0 −Nd

τ2
− c2Nd(t− T )R(t); R(t) =

αH3(t− T ′)
Nd(t− T ′)

τ2, T
′ are analogous definitions for the process of removing aerosols from the air via precip-

itation. R(t) is the rainfall rate in this context. This produces a coupled set of differential
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FIG. 6: Finite difference results for simplified predator-prey model for cloud formations.

Top: Contour plots of the stationary state values of H (cloud depth), R (rain rate), and Nd

(density of aerosol) as a function of H0 and N0 (the cloud depth and aerosol concentration that the

system converges towards based on details in the environment). H generally increases with either

H0 or Nd consistent with the fact the both parameters increase the amount of moisture trapped in

the particles that make up clouds. Large concentrations of moisture with small concentrations of

aerosol result in large precipitation rates, which generally results in dynamics which to not settle

into a stationary state, represented as the grey regions. The aerosol concentration decreases with

increasing precipitation, and consequently decreases near the precipitating region. The shift in

(A) from strong dependence on Nd to weak represents a mode switch from rainy, unstable cloud

formation to stable cloud formation. Bottom: Dynamics of cloud depth, rain rate, and aerosol

concentration for low (left) and high (left) rainfall. Low rainfall occurs for low H0 and high N0,

while high rainfall occurs for the opposite. The high rainfall mimics the behavior of the simple

Lotka-Volterra equations of Fig. 5(left), while the low rainfall mimics the damping oscillations

found from the detailed simulations of Fig. 5(right). Thus this model can span the behavior be-

tween the two systems, and thus connects the predator-prey model behavior to the behavior of the

detailed cloud dynamics. Reproduced from [5].

equations for clouds, aerosol, and precipitation analogous to the simpler Lotka-Volterra
equations.

Using a finite-difference approximation to the solutions, Koren and Feingold then present
numerical solutions to the differential equations, and find qualitative similarities to the more
detailed Navier-Stokes equations. For some sets of parameters the simulations approach a
stationary state, and the properties of these stationary states are explained in Fig. 6. Impor-
tantly, the system predicts two primary regimes associated with the presence of aerosols. For
high aerosol concentration, droplet formation is suppressed, and the population oscillations
converge quickly to a steady state, where clouds are stable at a fixed cloud depth. For low
aerosol concentration, the clouds are vulnerable to precipitation and experience extended
periods of reduced cloud depth. This corroborates evidence in both the numerical simula-
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FIG. 7: Top: Satellite images of cloud formations showing the “open” and “closed” cell phases

of cloud formation in the atmosphere. The “shallow cumulus” diagram notes that not all cloud

formations are readily categorized by these phases. Bottom: Solutions corresponding to these

phases from the stochastic diffusion model outlined in the text. Reproduced from [8].

tions, and the behavior of clouds in nature, which tend to either form stable “closed cell”
formations or clearer “open cell” formations. Examples of the distinct behavior of these two
phases are shown in Fig. 7(top).

B. Stochastic model and similarities to Ising model

A more recent study by Stechmann and Hottovy attempted to explain the shift between
these “open” and “closed” cell states in terms of a highly simplified stochastic diffusion
process [8]. Satellite view of cloud phases depict a variety of formations that seem to form
condensed phases varying between open to closed cells much as an Ising model varies from
spin up to spin down as the H-field moves from a positive to negative value. An example of
this shift is shown in Fig. 7. Their model attempts to incorporate the spacial variation in
the directions tangent to earth’s surface, considering the height-integrated quantity q(x, y, t)
representing the total total water in a column of atmosphere in the boundary layer at (x, y).
The q(x, y, t) is shifted so that q = 0 when the column of air is at its saturation point. The
model they consider takes the form

∂tq = b∇2q − 1

τ
q +DẆ + F

The model idealizes the movement of water in the atmosphere as represented by stochastic
diffusion. The first term, b∇2q, represents the diffusion of water as a result of many eddy
currents that are below the scale the model considers. The next two terms represent highly
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FIG. 8: Left: Analytic solution for the mean cloud area fraction according to the stochastic

diffusion model. This diagram holds b and τ fixed and varies D and F much like how H and T

would be varied in the Ising model. Right: The susceptibility, defined as ∂σ/∂F measure the

sensitivity of the phase to changes in the environment. Reproduced from [8].

simplified models for turbulence, −q/τ representing additional diffusion that results, and
Ẇ being spatially and temporally random noise. Finally F represents a source sink term
(depending on the sign). The values of the parameters, b, τ , D, and F are dependent on the
cloud environment, and for the purpose of this study, they fix b and τ and focus on D and
F due to their connections to environmental effects of interest. In particular, temperature
sea surface temperature has a direct effect on both D and F . Higher sea temperatures
will produce more atmospheric water vapor as well as increased noise due to turbulence, as
depicted by the purple arrows in Fig. 1. The other two parameters, b and τ are set by the
scales of variations in space and time, and are fitted to observational data.

In the interest of interpreting the cloud formation as a phase transition, the authors
consider a cloud indicator variable:

σ(x, y, t) =

{
1 : if q(x, y, t) > 0
0 : if q(x, y, t) < 0

The benefit of the simplified model is that the mean cloud indicator value are analytically
soluble. Because the model is stochastic, the stationary state solution to the equation is
also stochastic in nature. The analytic solution of the equation can be used to calculate σ,
the mean cloud indicator, as well as the effect of environmental factors on σ. The solutions
are illustrated in Fig. 8 and samples from the solutions appear in the bottom row of Fig. 7.

Interestingly, the solutions to the stochastic diffusion model are reminiscent of an Ising
model in 1-d. In fact, the parameters of the diffusion model outlined above have a simple
interpretation in terms of the Ising model parameters.

• b represents J , the interaction term between spins.

• D represents the randomizing effect of turbulence, and is analogous to temperature in
the Ising model.

• F represents H, in that it is an external effect that biases the system to either clear
or cloudy sky.

The τ parameter, however, does not have any analogy with the Ising model. This suggests
the singularity occurring at D = 0 (zero turbulence) represents the first order transition
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analogous to the zero-temperature transition in the 1-d Ising model as H changes sign. At
the zero turbulence limit, the solution space catagorizes the phases of cloud formations in
terms of two phases, open and closed, which correspond to clear and cloudy conditions.
Introducing a small amount of turbulence function much like temperature, causing random
coexistence of open and closed phases.

IV. SUMMARY AND CONCLUSIONS

The three results explored in depth here all explore aspects of cloud dynamics that sug-
gests concepts of critical behavior may be applicable to cloud formations. The satellite
imagery and scaling analysis suggested that the cycle between cloud formation and dissi-
pation through precipitation may be critical point. Moreover the critical behavior is quite
important because this system is constantly being driven through the transition by exter-
nal factors that push the air towards saturation and precipitation. Data collapse near the
transition between saturation and precipitation was suggestive that power-law scaling and
universal scaling exponents may exist for this transition. The fact that detailed simulations
of the Navier-Stokes equations can also be qualitatively reproduced through simple effective
models is also suggestive of critical behavior. Effective coarse-graining techniques rely on
long correlation lengths associated with the phase transition. These coarse-grained models
also are more numerically soluble for large-scale and long-time simulations, and hence may
be useful for gaining insight into how climate change may impact cloud formation, which
in turn affects the course of climate change. The diffusion model replicates the results of
the satellite scaling analysis, finding that transitions between cloudy and clear skies can be
connected to singular behavior in a response function. The resulting solution for the order
parameter, cloud fraction, is highly reminiscent of the behavior of the 1-d Ising model, which
exhibits a critical point at zero temperature.

Although these results are certainly interesting and suggestive, the concrete connection
to phase transitions is not yet clear. Although all three of these results suggest phase transi-
tions, they each make several simplifying approximations that may be unjustified, and only
make qualitative connections to critical behavior. The satellite data does indeed show data
collapse; however, the finite size scaling does not quite seem convincing that the collapse
is due to critical behavior. Finite size scaling utilizes the changes in the behavior of the
system as the size of the system, measured by lengthscale L (e.g. a square or box of side L)
changes compared to the correlation length, ξ. They affectively change L by averaging over
pixels in the satellite data, but this also coarse-grains the data, reducing ξ simultaneously.
Thus, it is not clear to me this is a proper way to conduct finite size scaling. The analysis in
terms of the predator-prey model completely ignores variations in space and time, and does
not draw any well-defined connection between the results and the open and closed phases
seen in satellite images. The diffusion equation does see a sharp critical transition, but only
in the limit of zero turbulence, and completely neglects spacial and temporal dependence
in the parameters. In reality the is always turbulence in weather patterns, and this turbu-
lence is likely more significant when considering spacial variations like mountains and other
geological features, as well as temporal variations like temperature variations between day
and night as well as seasonal variations. Nonetheless, given that these three fairly disparate
approaches all reach somewhat similar results seems encouraging that some truth may be
apparent in them. Given improvements to the simulations, such as incorporating the spacial
or temporal dependence in the parameters, potentially the applicability of their results may
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be better established. If indeed the machinery of critical phenomena applies to cloud for-
mation, this may open the possibility of applying renormalization group machinery to this
problem to better connect the detailed numerical simulations to the more understandable
and useful simplistic models [13].
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