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Abstract

Boolean satisfiability is a difficult computational problem that is actively stud-
ied due to its many practical applications and its deep connections to computational
complexity theory. In this essay, we demonstrate how techniques from the study of
phase transitions can be used to better understand random instances of boolean sat-
isfiability problems. We discuss the relation of satisfiability problems to Ising models
and spin glasses and discuss how finite-size scaling can be applied to study satisfiable-
unsatisfiable transitions in random instances of the k-satisfiability problem. We per-
form numerical calculations using a modern satisfiability problem solving algorithm to
demonstrate the finite-size scaling approach in detail. We numerically show that these
transitions appear continuous and discontinuous in the order parameter for k = 2 and
k ≥ 3 respectively. We also empirically demonstrate that problem instances near the
critical region of the phase transition are the most difficult to solve, which is useful for
benchmarking satisfiability algorithms.
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1 Introduction

Methods from statistical physics have been successfully applied to solve many challenging
problems in engineering and applied science. Famous examples include Markov chain Monte
Carlo — which was originally developed to study corrections to the ideal gas law for inter-
acting particles, simulated annealing — which is based on the physical process of annealing
a material, and belief propagation — which has connections to the cavity method developed
to study spin glasses [1, 2, 3, 4]. These techniques have been widely used to solve problems
in artificial intelligence, optimization, and error-correcting codes.

The concept of phase transitions from statistical physics has also been useful for un-
derstanding fundamental questions in computational science. Complexity, for example, is
an important problem in computer science relevant to many areas of mathematics and to
practical applications of algorithms in computational science and engineering. Studying the
complexity of algorithms allows us to characterize the difficulty of various computational
tasks and to create better algorithms to tackle them. Phase transitions provide a unique
perspective on the difficulty of solving certain problems that is not captured in the worst-case
algorithmic analysis typical in computer science.

Hundreds of computational problems have been put into a category known as NP-
complete. Intuitively, for problems in this category, solutions are easy to check but hard
to find. By “easy” (“hard”), we mean that in the worst-case an algorithm takes a time
polynomial (superpolynomial) in the input size. Problems in NP-complete can be mapped
onto one another in polynomial time, making them equivalent to one another in terms of
worst-case complexity. By this equivalence, if a problem in NP-complete would turn out to
be solvable in polynomial time in the worst-case, then all NP-complete complete problems
would be in the polynomial (P) complexity class. This would imply that P = NP . It is gen-
erally believed that algorithms for solving NP-complete problems must be superpolynomial
in the worst-case, or, equivalently, that P 6= NP . Nonetheless, while in the worst-case NP-
complete problems can be difficult to solve, it can be the case that many practical instances
of an NP-complete problem are easy to solve.

The boolean satisfiability problem (SAT) is one of the first problems proven to be NP-
complete and has been a useful workhorse for studying the properties of NP-complete prob-
lems. The problem consists of determining whether a boolean formula of many binary
variables can evaluate to TRUE, or be “satisfied.” As of yet, no algorithm that can solve
all instances of the SAT problem in polynomial time exists. Nonetheless, efficient exact and
heuristic SAT-solvers have been developed to solve practical problem instances that occur
in engineering and industry applications.

SAT can be usefully characterized by techniques from statistical physics. In particular,
properties of random SAT problem instances can be described using the language of phase
transitions and critical phenomena. Moreover, as we will discuss, random SAT problems
are closely related to disordered physical systems known as spin glasses. This makes the
study of SAT using statistical physics interesting for two reasons: (1) computer scientists
can learn about SAT and other NP-complete problems using concepts from statistical physics
and (2) physicists can learn about spin glasses using results from computer science on the
satisfiability problem.

In this essay, we will analyze the properties of random instances of the k-SAT problem
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using techniques developed to study phase transitions and critical phenomena. First, in
section 1.1, we provide a detailed description of the k-SAT problem. In sections 1.2 and 1.3,
we describe the relation of k-SAT and other NP-complete problems to the Ising model and
spin glass systems. In sections 2.1 and 2.2, we discuss a SAT solving algorithm and the finite-
size scaling technique, both of which we will use in our numerical analysis. In section 3.1, we
present and discuss our numerical results on the satisfiable-unsatisfiable transition for the
k-SAT problem for k = 2, 3, 4. Finally, we present our conclusions in section 4.

1.1 The k-satisfiability problem

The k-satisfiability problem (k-SAT) is an NP-complete decision problem that is frequently
used as a test bed for the development of new heuristic algorithms [5]. The goal of k-SAT is
to determine whether it is possible to assign boolean TRUE and FALSE values to satisfy a
boolean formula of a particular form.

A problem instance of k-SAT is specified by a set of N boolean variables x1, . . . , xN ,
whose values can be TRUE or FALSE (which we indicate by 1 or 0), and a set of M clauses
each made up of k variables.

An example of a 3-SAT problem instance with N = 4 variables and M = 6 clauses is

(x1 ∨ x2 ∨ ¬x4) ∧ (x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)∧
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) (1)

This problem instance is a boolean formula, where ∨ is a logical OR, ∧ is a logical AND, and
¬ is a logical NOT. In particular, it is in conjunctive normal form (CNF), so that the entire
formula is a logical AND of many clauses and each clause is represented by a logical OR
of its boolean variables (or their logical negations). It turns out that this particular 3-SAT
problem instance is satisfiable: the logical assignment (x1, x2, x3, x4) = (1, 1, 1, 0) evaluates
the entire boolean expression to 1.

Interestingly, any problem instance in 2-SAT is solvable in at-most polynomial time, i.e.,
is in the P complexity class. On the other hand, k-SAT for k ≥ 3 is NP-complete. For
example, there exist many 3-SAT problem instances where modern-day SAT solvers run in
time exponential in N . Evidently, there is a sharp distinction between the k = 2 and k = 3
cases putting the problems into entirely different complexity classes.

1.2 Spin glasses and their relation to k-SAT

Spin glasses are physical systems with magnetic disorder. They are named in analogy to
typical glasses and amorphous solids, which possess positional disorder. Spin glasses are
often described as systems of Ising spins Si = ±1 interacting under the Hamiltonian

H = −
∑
ij

JijSiSj −
∑
i

HiSi (2)

where the Jij, Hi are independent random variables drawn from a probability distribu-
tion such as a Gaussian distribution. For example, the Edwards-Anderson model and the
Sherrington-Kirkpatrick models of spin glasses are of this form [6]. The random Jij, Hi, which
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can be positive or negative, induce frustration between spins, similar to the frustration seen
in certain magnetic lattices, such as the triangular lattice.

The usual statistical mechanics analyses can be performed on spin glasses by comput-
ing partition functions Z and free energies f , but with an additional complication: these
functions need to be averaged over different disordered realization of the Jij, Hi. Exactly
determining the disorder-averaged quantities Z̄ and f̄ can be difficult to do analytically.
Techniques such as the replica method and mean-field theory can be applied to analytically
determine the properties of some simple spin glass models [6].

Instances of the k-SAT problem can be seen as Hamiltonians of the form Eq. (2). First,
by the relation Si = 2(xi − 1/2), each boolean variable xi = 0, 1 can be mapped onto an
Ising spin Si = ±1. Next, we can define a clause matrix W such that Wji = +1 if clause j
includes the boolean variable xi, Wji = −1 if clause j includes the boolean variable ¬xi, and
Wji = 0 otherwise. Then, we can write down the indicator expression

Vj =
1

2k

N∏
i=1

(1−WjiSi) (3)

which is 0 when clause j is satisfied and 1 when it is violated [7]. By summing over all such
clause indicators, we can write down a Hamiltonian for k-SAT whose energy corresponds to
the number of violated clauses [7]:

Hk-SAT =
M∑
j=1

Vj =
1

2k

M∑
j=1

N∏
i=1

(1−WjiSi) . (4)

The k-SAT decision problem can now be framed as checking if the ground state energy of
Hk-SAT is 0, which corresponds to the k-SAT instance being satisfiable.

Note that as written the Hamiltonian Hk−SAT has k-body spin interactions of the form
Si1Si2 · · ·Sik . There exist techniques for introducing auxiliary spins to couple with the orig-
inal spins that reduce the k-body interactions into 2-body terms as in Eq. (2) [8]. However,
this can introduce many auxiliary spins, sometimes many more than the original number of
boolean variables N .

Just as the Jij, Hi can be random variables, so too can the clause matrix Wji be gener-
ated randomly. A different random instance of Wji corresponds to a different random k-SAT
Hamiltonian Hk-SAT[Wji]. Therefore, randomly generated instances of k-SAT can be inter-
preted as random realizations of disorder for a spin glass. This correspondence has allowed
physicists to use tools designed for the analysis of spin glasses, such as the replica method,
to analyze the critical behavior of k-SAT [6]. We note this correspondence to provide some
rationale for considering k-SAT as analogous to a physical system and thus capable of ex-
hibiting phase transitions. However, we do not discuss the spin glass theory predictions
made for k-SAT. For more details, refer to [6].

1.3 Other NP-complete problems as Ising models

As detailed in the pedagogical article [8], many famous NP-complete problems can be de-
scribed in terms of spin degrees of freedoms and spin-glass Hamiltonians such as Eq. (2).
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In general, the procedure of mapping involves writing down the decision problem as an
optimization problem, with an objective function and constraints. We can associate the
objective function with a Hamiltonian HA, which when equal to 0 solves the given decision
problem, and the constraints with a Hamiltonian HB, which when equal to 0 satisfies all of
the constraints of the problem. The entire NP-complete problem can then be encoded in a
Hamiltonian H = HA + HB. Finding the ground state energy and checking if it is zero is
equivalent to solving the original decision problem.

2 Methods

We now present the tools that we will use to analyze the satisfiable-unsatisfiable transition
seen in random k-SAT problem instances. The relevant variable to tune across the transition
is the clause density α = M/N . In the thermodynamic limit N →∞ with clause density α
fixed, a phase transition appears at a critical clause density αC , which depends on k.

We study the phase transition by examining finite-size systems and employing finite-size
scaling techniques on PSAT (α), the probability that a random k-SAT instance with clause
density α is satisfiable. We compute PSAT (α) by numerically solving many samples of random
k-SAT problem instances at a fixed α with a SAT solving algorithm.

In this section, we first discuss the DPLL algorithm for solving SAT problem instances,
which we used to generate the data in Section 3. We then discuss how finite-size scaling can
be applied to k-SAT.

2.1 The DPLL algorithm

An important SAT solver is the Davis-Putnam-Logemann-Loveland (DPLL) algorithm de-
veloped in the early 1960s. The DPLL algorithm is a non-heuristic backtracking search
algorithm [9]. The method consists of performing a binary search, while avoiding large re-
gions of the search space by using two operations known as unit propagation and pure literal
evaluation.

The basis idea of how DPLL works is as follows. Consider a brute force binary search.
At each step of the algorithm, you consider a boolean variable xj. You try setting xj = 0,
then xj = 1, and do so recursively until you reach a configuration of {xi} that satisfy the
boolean formula or until you have exhausted all possible configurations. Instead of the naive
binary search, DPLL performs unit propagation and pure literal evaluation at each step to
deduce whether xj = 0 or xj = 1 must hold. Empirically, this modification often results in
exploring a much smaller number of configurations than the 2N configurations explored in
the brute force search.

Many SAT solvers are extensions or modifications of the underlying DPLL method. We
make use of one such state-of-the-art solver, called zChaff [10], to determine PSAT (α), the
fraction of random k-SAT instances for clauses of length M = αN that are satisfiable.
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2.2 Finite-size scaling

Finite-size physical systems at non-zero temperatures do not have phase transitions. It is
only in the thermodynamic limit, when the system size is taken to infinity, that singularities
in the free energy density emerge and phase transitions become well-defined. Nevertheless,
information about the scaling laws near a phase transition can be obtained by analyzing
finite-size systems. The procedure for doing this for continuous phase transitions is known
as finite-size scaling.

The main tool for understanding scaling laws near a continuous phase transition is the
Renormalization Group (RG) [11]. The RG is an iterative procedure that involves an “RG
transformation” from a system to another with a length scale increased by a factor ` > 1.
Iteratively applying the RG procedure changes the coupling constants of a Hamiltonian,
causing them to flow towards fixed points in coupling constant-space. Certain fixed points,
called critical fixed points, correspond to phase transition boundaries.

Consider a finite-size physical system of size L with a single coupling constant K ∝ 1/T
tuned to be near a critical fixed point. The RG transformation can be applied near this point
and linearized to obtain various scaling laws [11]. One such scaling law is for the correlation
length

ξ(t, L−1)

L
= F (L/ξ∞) = F (Ltν) (5)

where F is a scaling function, t ≡ (T−TC)/TC is the reduced temperature, and ν is the critical
exponent of the correlation length in the infinite-size system (ξ∞(t) = limL→∞ ξ(t, L

−1) ∼
t−ν).

Since for a finite L there is no singular behavior for ξ, the expression is analytic and can
be safely Taylor expanded about t = 0 to give

L

ξ(t, L−1)
= A+BtL1/ν +O(t2) (6)

where A and B are constants [11]. To determine the critical exponent, one can take a
derivative of this expression with respect to the coupling constant K to obtain

∂

∂K

(
L

ξ(K,L−1)

)∣∣∣∣
T=TC

∝ L1/ν . (7)

This logic can be applied to random k-SAT problem instances with little modification. In
the case of k-SAT, the analog of system size L is N and the analog of the coupling constant
K is the clause density α = M/N . Finally, in the k-SAT literature, L/ξ(t, L−1) corresponds
to the order parameter PSAT (ᾱ, N−1), where ᾱ ≡ (α− αC)/αC [12].

In summary, the critical scaling for the k-SAT phase transition about α = αC is

PSAT (ᾱ, N−1) = G(Nᾱν) (8)

where G is a scaling function. The critical exponent ν can be determined by the relation

∂PSAT (α,N−1)

∂α

∣∣∣∣
α=αC

∝ N1/ν . (9)
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3 Results and Discussion

In our study of the k-SAT transition, we generate random k-SAT problem instances in
systems with N = 10, 20, 40 and 100 boolean variables. Each problem instance is solved
by the zChaff SAT solver [10]. This allows us to estimate the disorder-averaged quantity
PSAT (α), which we use for finite-size scaling.

3.1 Phase transitions in k-SAT

The critical behavior of k-SAT was numerically described by Scott Kirkpatrick and Bart
Selman in 1994 [13]. We compare our results for the k-SAT phase transitions for k = 2, 3, 4
with their results.

For k = 2, it has been analytically shown [6] that a satisfiable-unstatisfiable phase tran-
sition occurs at the critical clause density αC(2) = 1 with an estimated critical exponent of
ν(2) = 2.6 [13]. For k = 3, 4, numerical estimates of the critical points and exponents are
αC(3) = 4.17, αC(4) = 9.75 and ν(3) = 1.5, ν(4) = 1.25 as described in [13].

Figure 1 shows our calculations of PSAT (α) for k = 2, 3, 4 in finite-size systems. For large
N , finite-size effects are diminished and the limiting behavior of PSAT (α) in the infinite-size
limit becomes evident. For k = 2, we can see that PSAT (α) continuously changes from 0 to 1
as α is changed from αC = 1 to 0. For k ≥ 3 on the other hand, when N →∞ the transition
becomes discontinuous such that PSAT (α−C) = 1 and PSAT (α+

C) = 0.
Our finite-size scaling results for k-SAT are shown in Figure 2. For each k, the PSAT (α)

curves rescaled according to Eq. (8) collapse well onto a universal scaling function, even for
α far away from the critical clause density αC . Moreover, Figure 3 demonstrates how the
scaling relation from Eq. (9) can be used to compute the critical exponent ν. Our result for
k = 3 produces an estimate ν = 1.64 ± 0.11 for the critical exponent that agrees well with
the established result of ν = 1.5± 0.1 from [13].

In [5], the authors argue that the behavior of the order parameter PSAT for 2-SAT and
3-SAT (as displayed in Figure 1) demonstrates that the 2-SAT transition can be thought of
as a continuous ‘second-order’ transition and that the 3-SAT transition as a discontinuous
‘first-order’ transition. However, we disagree with this interpretation due to the fact that
finite-size scaling, which only applies for continuous phase transitions, works well for all k.

Finally, it is interesting to consider the average running time of the DPLL algorithm,
as shown in Figure 4. Evidently, the “hardest” k-SAT problem instances, which take the
longest for the DPLL method to solve, occur near the critical region. However, for most clause
densities, problem instances are solved quickly. Interestingly, this empirical easy-hard-easy
transition indicates that, despite the fact that k-SAT is NP-complete, most k-SAT problems
can actually be solved efficiently.

4 Conclusions

By performing numerical analyses on random instances of the k-SAT problem for k = 2, 3, 4,
we demonstrated how techniques for describing phase transitions could be used to char-
acterize important properties of k-SAT. We applied finite-size scaling to the system and
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Figure 1: Our numerical estimates of PSAT (α), the probability that a random k-SAT problem
instance with clause density α is satisfiable, for (a) k = 2, (b) k = 3, and (c) k = 4. Each estimate
was made by solving 10,000 randomly generated k-SAT instances of N = 10, 20, 40 boolean variables
(and N = 100 for 3-SAT) using the zChaff algorithm [10].
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Figure 2: Finite-size scaling of k-SAT for (a) k = 2, (b) k = 3, and (c) k = 4. For each k, the
PSAT (N1/ν(α−αC)/αC) curves for different N collapse onto a universal scaling function for α near
αC . Each point is generated from 10,000 random k-SAT problem instances with N = 10, 20, 40
variables (and N = 100 for 3-SAT). The critical clause densities and critical exponents used in the
scaling were αC = 1, 4.17, 9.75 and ν = 2.6, 1.5, 1.25 for k = 2, 3, 4 respectively as obtained in [13].
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Figure 3: Log-log plot of the α-derivative of PSAT (α,N−1) at the critical point α = αC = 4.17 for
different system sizes N for 3-SAT. According to Eq. (9), this curve should be a straight line with
slope 1/ν. By performing a least-squares linear fit, we estimate the critical exponent ν = 1.64±0.11,
which matches with the value ν = 1.5± 0.1 measured in the literature [13].
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Figure 4: The average running time of the zChaff algorithm (a modified DPLL method [10]) in
milliseconds for 3-SAT with N = 100. Each point was estimated by measuring the running time
of zChaff on 10,000 randomly generated 3-SAT problem instances with M = αN clauses. The
red dashed line indicates the position of the phase transition in the infinite-size limit, which is at
α = αC = 4.17 for 3-SAT [13].
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demonstrated that it could accurately describe the behavior near the satisfiable-unsatisfiable
transition. In this analysis, we showed data collapse and were able to compute the critical
exponent for 3-SAT, which agreed well with results in the literature. We also saw that
for 2-SAT, which is in the P complexity class, the phase transition appeared continuous
in the order parameter PSAT and that for k-SAT with k ≥ 3, which is NP-complete, the
transition displayed a discontinuity in PSAT . Moreover, we noted that despite the apparent
discontinuities in PSAT for k ≥ 3, the phase transitions for k ≥ 2 are still likely continuous
transitions since finite-size scaling holds very accurately. Finally, empirically, we showed that
the hardest 3-SAT problem instances occurred in the critical region around the transition.
This suggests that problem instances in the critical region of k-SAT can be used as useful
benchmarks for the performance of SAT solving algorithms.
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