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Abstract

In both evolution and economics, populations sometimes cooperate in ways
that do not benefit the individual, and sometimes fail to cooperate in ways that
would benefit the population. One method to explain the success or failure
of cooperation is the social network model, in which simplified two-person
interactions take place over a network of social connections. In this paper, I
explore some of the experimental evidence of cooperation in microorganisms
and humans. Then, I explain the theoretical models used to predict when
cooperation will occur, with particular attention to the prediction of phase
transitions.



1 Introduction
In economics and evolutionary theory, the existence of cooperative behavior in large
groups has been a longstanding puzzle. Cooperation, while mutually beneficial to
society, frequently comes with a temptation for any individual to defect. How, then,
does large scale cooperation exist? Why does the United States have public radio
and privately run homeless shelters? Why do some animals, such as guppies, defend
each other against predators when it would be safer to run away? And why does
cooperation sometimes break down? Why does the United States not have free
grocery stores, or a communal pool of cars that anyone can use? Why do other
animals leave their friends to be eaten?

One method to explain large scale cooperation is the social network model, in
which a population interacts with some fixed set of partners via a prisoner’s dilemma
type game. In these models, both the rules govering the interaction between partners
and the overall structure of society affects the presence or absence of cooperation.
As we will see, these models can make powerful predictions, but are sensitive to the
details of the network they are built on.

In this paper, we will focus on the presence of phase transitions in these social
networks, as one tunes the parameters governing the interactions in our model so-
ciety. We will see that the cooperative behavior of a social network can display
discontinuous and continuous phase transitions, as well as a buildup of critical fluc-
tuations.

The overall outline of the paper is as follows. First, we will describe some exper-
imental studies of cooperative behavior. Next, we will describe in detail the social
network model of cooperative behavior. Finally, we will discuss the theoretical pre-
dictions of phase transitions in these models, both in mean field theory and beyond
mean field theory.

2 Experimental results
Here, we describe some experimental results on prisoners dilemma type problems.
This discussion is by no means comprehensive, as a great deal of research has been
done on the prisoner’s dilemma, and a complete overview of the literature would
be beside the point. Instead, we focus on a few examples, which serve to illustrate
the importance of both the interactions between individuals and the overall social
structure.

In economics, [1] demonstrate human cooperation via altruistic punishment. In
that experiment, players were allowed to put money in to a public pool, where it
would be doubled and then divided up evenly among all players. In this game,
it was found that participants would pay money to punish defectors, even if the
punishment did not benefit the participant. Thus, most humans were willing to
behave cooperatively even if it did not directly benefit them and would not benefit
them in the future.

In evolutionary biology, one might expect organisms to evolve to benefit the
species as a whole; however, if a random mutation allows a single organism to take
advantage of the species’ cooperation, that organism will likely breed faster and
dominate the species. This was demonstrated in [2], in which it was shown that
for high enough densities of a certain RNA virus, the virus would eventually evolve
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towards non-cooperation. However, this paper also showed that virus strains which
evolved in low-density environments remained cooperative, because subsequent gen-
erations were more genetically similar to the ancestors. This is a first suggestion
that the geometry of the social network is important: high density allows for many
interactions and a dense social network, while low density creates a sparse social
network.

Similarly, [3] demonstrates the evolution of non-cooperation in yeast. However,
in this study, it was found that unlike in the RNA virus, the non-cooperator did not
dominate the population; instead, the cooperators and non-cooperators coexisted
at some fixed fraction. The authors show that this is due to the fact that the
yeast is not in a perfect prisoner’s dilemma situation, in which defecting is always
advantageous. Rather, after a certain fraction of the population has defected, the
cost to defect is higher than the cost of cooperation. This variation of the prisoner’s
dilemma, the so-called snowdrift game, will be discussed in more detail in section
3.1 below. For now, the important takeaway is that the rules of interaction affected
the macroscopic fraction of cooperators.

We thus see that the cooperative outcome of the social game can be expected to
depend on both the pairwise interactions and the overall social structure.

3 The social network model of cooperative games
In this section, we explain the model used to describe cooperative games, the social
network model, first described in [4]. The basic framework the social network model
is that the population is made up of N individuals, who plays a collection of two
person games with some fixed set of partners in the population whom they are con-
nected to. After all games are completed, the successful individuals either reproduce
or convince others to adopt their strategy, while the unsuccessful individuals die off
or are convinced to adopt a more successful strategy. The game then iterates.

3.1 The two person cooperative game

Our two person game will be a prisoner’s dilemma type game, where each player has
only two strategies available to them. The may defect (D) or cooperate (C). The
player receives a payoff depending on both his strategy and his opponents strategy.
The table below defines the outcome of the game. For each strategy of the player
on the right and opponent’s strategy above, the player receives a the payoff given in
the table. For example, if a player chooses (C) while the opponent chooses (D), the
player receives a payoff of c. Note that we can always rescale our units so that the
difference between the (C,C) payoff and the (D,D) payoff is 1. In addition, all the
results we describe below depend only on the difference between payoffs, so we may
set the (D,D) payoff to 0 without affecting outcomes. Thus, the table given below
is completely general. The matrix describing the payoff table is frequently denoted
by P.

Opponent

P =

(
1 c
b 0

)

P
la
ye
r C D

C 1 c
D b 0
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Figure 1: Three examples of social networks. From left to right: a triangular lattice,
a square lattice, and a complete graph.

We can classify the games into four main categories, depending on the values of
b and c [5, 6]. The case where b > 1, c < 0, is the classic prisoner’s dilemma game
(PD). No matter the strategy used by the opponent, it is optimal for the player to
choose to defect (D). Thus, one expects every player to defect and for every player to
receive a payoff of 0, despite the fact that mutual cooperation could lead to everyone
receiving a payoff of 1.

The case where b > 1, c > 0, is called a snowdrift game (SD). In this game, like
the PD, each player wants to be the only one to defect. However, unlike the PD, if a
player expects their opponent to defect, it is rational for them to choose (C). Thus,
one expects players to attempt to choose the opposite strategy as their opponent.

The case where b < 1, c > 0 is called a harmony game (HG). In this game,
defecting always gives a worse outcome, thus one expects players to always choose
(D).

Finally, the case where b < 1, c < 0 is called a stag hunt game (SH). In this
game, one has no incentive to defect unless one believes their opponent will defect.
Thus, one expects players to choose (C,C), but to choose (D,D) if they do not trust
their opponent to be rational.

3.2 Cooperative games and geometry

To describe population-wide dynamics, we need to describe both the two-player
game being played, and the pairs of people playing it. Given a population of size
N , we’ll describe the pairs of players by a graph on N vertices. Two people in the
population play a round of our game if they are connected by a node on the graph.
These graphs are called social networks, as they are meant to encode which people
interact in our model society [5].

Figure 3.2 gives three examples of possible social networks. In the triangular
lattice, each person interacts with their six nearest neighbors, while in the square
lattice each person interacts with their four nearest neighbors. In the complete
graph, each person interacts with every other member of the population.

We should take special notice of the complete graph. Since each person is con-
nected to every other person, each person receives a payoff which depends only on
their strategy and the average of all other people’s strategies. Thus, for large N ,
this social network corresponds to mean field theory on a given social game [5].
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3.3 Time dynamics of cooperative games

The final ingredient we need for our theoretical description is a rule for how people’s
strategies change with time. Intuitively, we want to demand that after each round of
the cooperative game, successful strategies proliferate while unsuccessful strategies
die out. We might also wish to introduce some noise, to represent random mutations
in strategy. Here we introduce a few possible update rules that are used below;
obviously, others are possible.

Denote the strategy of player i by a vector ~si, where ~si = ( 1
0 ) if player i is

cooperating, and ~si = ( 0
1 ) otherwise. Then after one round of the game, player i

receives a total payoff of

Pi =
∑
j

~sj
TP~si

where the sum is over the neighbors j of i in the social network.
Our simplest update rule is [7]: i chooses a neighbor j at random. If Pi > Pj, i

does nothing, since his strategy is superior. If Pi < Pj, Pi adopts strategy ~sj with
probability

W [~si → ~sj] = η(Pj − Pi) (1)

where η is some constant that ensures η(Pj − Pi) < 1 for all possible Pi, Pj. The
constant η affects the rate at which strategies can spread through a social network,
but generally does not affect the long-time behavior.

In the case of a complete graph with N >> 1 players, the only relevant quantities
are the fractions pC and pD of cooperators and defectors. In this mean field case,
equation 1 reduces to [6, 7]

dpC(t)

dt
= pC(t)

[ ∑
β=C,D

PCβpβ(t)−
∑

α,β=C,D

pα(t)Pαβpβ(t)

]
(2)

and of course pD = (1 − pC). This equation is called the replicator equation. It
says that the rate of change of strategy C is proportional to the current fraction
of people using C times the difference between payoff for C and the average payoff
in the population. If C has a greater average payoff than the population its use
will increase; otherwise its use will decrease. Note that η from equation 1 has
disappeared, as we’ve absorbed it into our parameter t.

Finally, we will use a modified update rule that includes random mutation. In the
update rule given by equation 1, we specified that a player would never change to a
strategy that was worse than their current strategy. In this update rule, we introduce
a noise parameter that allows a player to occasionally adopt a worse strategy. Each
player i randomly chooses a neighbor j, and switches to strategy ~sj with probability
[8]

W [~si → ~sj] =
[
1 + e

Pi−Pj
K

]−1

(3)

Here K is a parameter that determines the noise in the system. If K = 0, the
neighboring strategy is adopted whenever Pj > Pi, while K > 0 there is some
probability of i declining to switch even when Pj > Pi and some probability of
switching even when Pj < Pi.
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The mean field theory version for of this equation [8]

dpC(t)

dt
= pC(t)[1− pC(t)] tanh

(
[b+ c− 1]pC(t)− c

2K

)
(4)

although we will see that this equation predicts the same long-time behavior as
equation 2.

4 Phase transitions in social networks
Here, we discuss the phase transitions predicted in social networks. While a complete
theory on general graphs is not known, the phase diagram is essentially complete
at a mean field level. Beyond mean field, we will outline the results that have been
studied on specific networks.

4.1 Phase transitions in mean field theory

We will explore the mean field theory given by the replicator equation 2. To solve
for the long time behavior, we want to find the stationary solutions and determine
their stability. The stable solutions correspond to the long-time behavior of the
game. We will characterize the phase of the system by the values of the stationary
solutions of pC ≡ p. The equation for p can be written as

0 = p(1− p)[c(1− p)− (b− 1)p] (5)

The stationary solutions are then given by p1 = 0, p2 = 1, and p3 = c
c+b−1

. Note
that the stability of these solutions depends on the values of c and b, and that the
solution p3 is only a valid solution when 0 ≤ p3 ≤ 1.

We can classify the phases of our game using the nomenclature of section 3.1
based on the stable and unstable solutions [6]

c > 0 c < 0

b>1

SD
p1 unstable
p2 unstable
p3 stable

PD
p1 stable
p2 unstable
p3 invalid

b<1

HG
p1 unstable
p2 stable
p3 invalid

SH
p1 stable
p2 stable
p3 unstable

The case of the stag hunt (SH) game is particularly interesting: here, there are two
stable solutions. The system evolves towards total cooperation if it initially satisfies
pc(0) > p3, and evolves towards total defection otherwise.

We see from this classification that the transitions between certain games must
be discontinuous. For example, if we tune b and c to go directly from PD to HG,
the order parameter must jump from p = p1 to p = p2. Other transitions may be
continuous; for example, the transition from PD to SD is continuous, since at the
phase boundary c = 0, p3 = p1.
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Figure 2: Figure from [6]. Each graph describes a certain path in phase space. Solid
lines represent stable equilibrium, while dotted lines represent unstable equilibrium.
The white regions of the graphs are the PD phase, where defection occurs. The
solid red regions are the HG phase, where cooperation occurs. The striped regions
are the SD phase, where cooperation and defection coexist. Finally, the dotted red
regions are the SH phase, where both cooperation and defection are stable, and are
separated by an unstable coexistence line.

In [6], the authors illustrate the possible phase transitions from a PD to a game
in which p 6= 0. Route 1 illustrates the transition between PD and HG, in which p
changes discontinuously. Route 2 illustrates a transition between PD and SH, where
p = 0 the entire time unless the parameters are tuned to make p3 << 1, in which
case small fluctuations can drive the system above p3 and thus into the p = 1 phase.
Route 3 demonstrates the continuous phase transition between PD and SD. Route
4 illustrates a route to a HG phase than is a continuous transition rather than a
first-order transition, where we first tune through a SD phase. Route 5 illustrates
the transition PD-SH-HG. In this transition, it is not clear where p jumps from
p = 0 to p = 1; the jump must happen wherever the amplitude of small fluctuations
exceeds p3 and drives the system to p2. However, we know by the time the system
reaches HG the system must have p = 1. Finally, route 6 illustrates the continuous
transition PD-SD-HG-SH. This transition guarantees that the SH game ends up in
the p = 1 cooperative phase by first going through a HG phase.

Obviously, one could consider many other paths between phases, but all the
paths can be characterized entirely by the stability of p1, p2, and p3 and the value of
p3. Note that even at the mean field level we see nontrivial phase boundaries. These
phase boundaries have nontrivial implications. For example, if a government wanted
to transition a certain segment of society between the PD and SH phase, it could pick
many possible paths. However, if the government wants to avoid economic shocks
it should avoid discontinuous transitions, and if it wants to ensure cooperation it
should end in the p = 1 equilibrium of SH. Thus, the government should follow route
6 rather than route 2.

We can also consider playing the same game with equation 4. While this equation
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Figure 3: Figures from [9]. p as a function of b on the square lattice. Left: K = .1.
Right: K = .5. In both cases, we see that the presence of the lattice has allowed
cooperation to persist into the PD regime. The squares are the Monte Carlo data,
while the dotted lines represent a more sophisticated mean field approximations
generated by clustering groups of nodes in the lattice.

has an additional parameter K to tune, this parameter does not change the mean
field equilibrium solutions. It is straightforward to check that the solutions p1, p2,
and p3 still apply, and that the stability is identical as well. Thus, we expect the
same phase diagram for this equation.

4.2 Beyond mean field theory

Here, we review the work that has been done on specific lattices beyond mean field
theory. Broadly, we find that phase boundaries are modified towards more coopera-
tion on these lattices vs the mean field theory. Intuitively, this is because defectors
cannot spread arbitrarily; instead, they quickly surround themselves with other de-
fectors and reduce their payoff compared to the cooperators. This phenomena, in
which the presence of a lattice enhances cooperation, is called lattice reciprocity.

In the following sections, we show that Monte Carlo results on a simple lattice
modifies the phase boundary from mean field theory, while mean field theory neglects
a phase boundary entirely in a more exotic social network due to critical fluctuations.
Finally, we explore the effect of noise on the phase boundaries, which cannot be
captured by the mean field theory.

4.2.1 Mean field theory vs Monte Carlo on a square lattice

The simplest lattice we may explore is the square lattice. Here, we consider the
limit of c small and negative, and look at the behavior of p as a function of b. We’ll
use the update given in 3, so that a parameter K describes the noise in the system.

Because c < 0, we’re tuning between SH and PD. The mean field theory predicts
either a continuous transition with p = 0 or a discontinuous transition from p = 1 to
p = 0 when tuning across the phase boundary b = 1. In [9], the authors used Monte
Carlo methods to determine the p as a function of b. Their results are plotted in
figure 4.2.1. They found that the presence of the lattice increased the critical value
of b and made the phase transition continuous, while noting that tuning K towards
zero seemed to increase the sharpness of the transition.
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Figure 4: Figure from [7]. The big brothers social network. The big brothers, labeled
as 1 and 2, are connected to groups C and F. C and F are regular graphs, in that
each node is connected to k other nodes.

We have thus seen our first example of lattice reciprocity, as the lattice allowed
cooperation to persist in the PD regime.

4.2.2 Critical fluctuations in a big brother network

Here, we present results from [7] which shows a network that has a phase transition
mean field theory fails to capture. In this model, we use the update given by equation
1, and study an exotic network, called the dipole or big brothers network, shown
in figure 4. Here, two “big brothers”, labeled 1 and 2, are connected to groups
of nodes C and F. Each of these groups is a regular graph, in that every node is
connected to k other nodes for some fixed k. We denote by nc and nF the number
of nodes in C and F . This graph represents a society in which there exist two main
dominant figures, and two distinct social groups.

In this network, the authors performed a mean field calculation in which fluc-
tuation in the groups C and F were neglected, but the evolution of nodes 1 and 2
were treated exactly. They then compared this result to Monte Carlo simulations
for nF = 4000 and decreasing values of nC . The results are plotted in the first graph
of figure 4.2.2. They find that the Monte Carlo results show that p goes linearly to
0 in the limit nC/nF → 0, while the mean field calculations show p asymptotically
decaying as b → ∞. Thus the mean field theory has entirely missed a phase tran-
sition. This cannot be thought of purely as a failure of mean field theory for small
nC , since it is possible to take the nC/nF → 0 limit without nC itself being small.

The mean field theory itself predicts the fluctuations to smoothly decrease in
this critical region. To explain this breakdown of mean field theory, the authors also
computed the fluctuations 〈σ〉 = 〈p2〉− 〈p〉2 in their Monte Carlo simulation. These
results are shown in the second graph of figure 4.2.2. We see that as nC/nF → 0, the
fluctuations diverge near the critical value of b. We thus see that this breakdown of
mean field theory is directly related to the buildup of fluctuations near the critical
point.
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Figure 5: Figures from [7]. Left: p as a function of b in Monte Carlo and mean field
calculations. Monte Carlo predicts a sharp transition to p = 0 when nC/nF ≈ 0,
while mean field theory does not. Right: Buildup of critical fluctuations as nC/nF →
0.

Figure 6: Figures from [8, 10]. The five lattices considered in section 4.2.3. From
left to right: two random regular graphs, a square lattice, a four-site clique lattice,
and a kagome lattice

4.2.3 Social networks and noise

We want to characterize the dependence of cooperation on noise. Does noise/randomness
increase cooperation or decrease it? As we’ve seen, mean field theory predicts the
noise parameter K has no effect on the presence or absence of cooperation. Here, we
explore the effect of noise on five different model lattices, shown in figure 6. Since
we are working with a noise parameter, our update is given by equation 3.

We restrict to small but negative c, so we are considering the PD and SH games.
The fact that c is small implies that fluctuations should send us to the p = 1 phase
of the SH game, at least according to mean field theory. Generally, then, we expect
that for fixed K, as we tune from b << 1 to b >> 1 we will see a transition from
p 6= 0 to p = 0 at some critical value bcr. Mean field theory predicts bcr = 1. In [8]
and [10], the authors used Monte Carlo simulations to determine the actual critical
values of b. The results are plotted in figure 7. We see that the effect of noise is
to encourage cooperation compared to K = 0 on the first random regular graph,
square lattice, and clique lattice, but discourage cooperation on the second random
regular graph and the kagome lattice. Thus, noise does not have a predictable effect
on cooperation; it depends on the social network studied. We also note that for all
of the lattices, the presence of the lattice increased the critical value compared to
the mean field prediction of bcr = 1, so all of these lattices exhibit lattice reciprocity.
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Figure 7: Figures from [8, 10]. From top left to bottom right: the critical values
bcr for lattices RRG1, RRG2, 1, 2 and 3 of figure 6. The data points connected by
solid lines are the Monte Carlo calculations, while the dotted lines are again more
sophisticated mean field calculations.

5 Conclusion
There are, of course, many other studies of social networks that were not mentioned
in this paper, as they did not deal with the phase transition behavior. An excellent
and extensive review article from a physics perspective is [5].

Social network models demonstrate that the presence or absence of cooperative
behavior depends on both the type of payoffs considered and the overall structure of
society. Moreover, the paths between cooperation and defection can cross nontrivial
phase boundaries, in which singular behavior and critical fluctuations are observed.
While these phases and phase boundaries are understood at a mean field level,
the mean field theory can break down on more complex social networks. So far,
there is no general theory connecting the structure of these social networks to the
phases of social cooperation on them, or a general theory of what parameters might
enhance social cooperation (besides the obvious parameters in the payoff matrix).
One striking example of this is the effect of K on the phase boundary between
PD and SH. Depending on the social network, we saw that K can either increase
or decrease cooperation, and there is no obvious way to predict the effect from the
geometry of the network. If the microscopic structure of these networks significantly
affects their predictions, this limits their applicability to predict experiment, since
the underlying social network is not known (and may not even rigidly exist). Thus,
further work is needed to extract meaningful results that do not depend on the
microscopic details of the network.
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