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Abstract

This essay describes the renormalization group approach to a 1D sine-
Gordon model. This model is shown to be dual on the RG level to 2D X-
Y spin model and exhibits the same Kosterlitz-Thouless transition near the
critical point. We also discuss what role sine-Gordonmodel plays in studying
boundaries of 2D topological materials, discuss its RG properties, and show
howKT phase diagram analysis could possibly allow us to detect topological
phases of matter experimentally.



1 Introduction
This term paper is mainly going to deal with 1 + 1D scalar field theory with the
following action:

S = ∫
d�dx

[

1
v
()��)2 − v()x�)2

]

(1)

where  is some area in � − x space. Usually  is picked to be:  = {0 <
� < �, 0 < x < L} with predefined � and L. We will mostly focus on studying
perturbations to this theory of the following form:

�S = g ∫
d�dx cos(��) (2)

where parameter g is usually referred to as the amplitude and parameter � is the
coupling constant. Turns out that this simple perturbation can yield a phase tran-
sition with highly non-trivial behavior near the critical point.

This simple scalar field action appeared in many contexts throughout the past
fifty years and to this day it is one of the most thoroughly studied models. One
might reasonably ask, what could be the reason to pick such a simplistic model as
a topic for 2017 phase transitions’ term paper. To answer this question, we need to
turn our attention to the rapid theoretical and experimental progress in the study
of 2-dimensional materials with nontrivial topological phases of matter. Turns out
that the edge of such crystals support effective 1 + 1D bosonic theory. Coupling
these materials to superconductors and/or turning on magnetic field allow us to
introduce interaction terms to the underlying fermionic theory [6] which under
bosonisation enter scalar field Lagrangian in the form of cos(�) terms. This pro-
vides us enough incentive to study sine-Gordon model from the RG point of view.
More than that, this understanding of 1 + 1D scalar field theory as a bosonisation
of a more fundamental fermionic theory living on the edge of a crystal means that
we might also be interested in how do these perturbations affect spectrum of a
fermionic theory both in the bulk and on the edge of the material and how does
relevant and irrelevant perturbations differ from the point of view of electronic
exications.

The structure of this term paper is as follows: we will begin by reviewing some
preliminary information about correlation functions in scalar field theories. Then
we’ll discuss the general behavior of sine-Gordon model in infrared regime. We
will see that there exist two different phases and that critical behavior is governed
by renormalization of two parameters, g and �. Then we will explore the role such
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terms can play in the theory on the edge of FQH state and how these perturbations
can be realized in practice.

2 Preliminaries
In this section we will quickly derive one of the most important formulas in scalar
field theory closely following the logic presented in [1]. First, let us start with the
partition function for the scalar field � with the source �:

Z[�] = ∫ D�(x)e−S−∫ d�dx�(x)�(x) (3)

rewriting field and source in terms of their Fourier components we get:

Z[�] = ∫ Πp�(p) exp
⎛

⎜

⎜

⎝

−1
2
∑

p
�(−p)(vq2 + v−1!2)�(p) +

∑

p
�(−p)�(p)

⎞

⎟

⎟

⎠

(4)

where the variables are given

p = (!, q), ! = 2�n
�
, q = 2�m

L
(5)

now, as we did numerous times in class, performing the shift of �(p), we arrive at
Gaussian integral in � with additional term quadratic in source �:

Z = Z[� = 0] × exp
⎛

⎜

⎜

⎝

1
2

∑

p,p≠0
�(−p)G(p)�(p)

⎞

⎟

⎟

⎠

(6)

where G(p) is the usual Green’s function:

G(p) = 1
vq2 + v−1!2

(7)

this can be translated to position space as:

Z[�]
Z[0]

= exp
(

1
2
�(�)G(�, �′)�(�′)

)

(8)
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where the Green’s function in position space is given by [3]:

G(z, z) = 1
4�
ln
(

1
zz + a2

)

, where z = � + ix
v

(9)

and a is the position space cutoff of the theory. So far we haven’t done anything
what wasn’t discussed in class. However, right now we are going to make a par-
ticular choice of source function � that will allow us to compute very useful cor-
relators:

�0(�) = i
N
∑

n=1
�n�(� − �n) (10)

substituting this into (3) we getN-point correlation function of bosonic exponents:

Z[�0]
Z[0]

= ⟨ei�1�(�1)...ei�N�(�N )⟩ = exp
⎛

⎜

⎜

⎝

−1
2
∑

i,j
�iG(�i, �j)�j

⎞

⎟

⎟

⎠

(11)

Substituting here the expression for Green’s function (9), we can explicitly com-
pute and analyze correlators of cosine operators (2) which basically have the form
we are most interested in:

cos(��) = 1
2
ei�� + h.c. (12)

3 sine-Gordon model
Now let us study 1 + 1D scalar field theory with the action 1 and perturbations
of the form 2. Let us state the following theorem: A perturbation with scaling
dimension d is relevant if d > D and irrelevant if d < D. Where D is the space-
time dimension D = 2. Relevant perturbations are those whose influence grows
on larger scales, while irrelevant perturbations fade out as we move away from
critical point. Conformal field theory result [3] states that the operator

g ∫
d�dx cos(��) (13)

has the scaling dimension

d =
�2

4�
(14)

It means that for d ≡ �2

4�
< 2 this perturbation is relevant. Relevant perturba-

tions can break conformal symmetry leading to the final correlation length. Let us
observe how exactly this happens in sine-Gordon model.
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3.1 Bosonic mass gap
One of the many ways to demonstrate that is to show that this theory describes a
massive field. For simplicity, let’s assume that � ≪ 1 then we have, expanding
cosine around the point � = �∕�:

cos(��) ≈ −1 + 1
2
�2(� − �∕�)2 + ... (15)

this turns our initial action into theory of massive scalar field:

S = ∫
d�dx

[

1
v
()��′)2 − v()x�′)2 + g�2�′2

]

, where �′ − � − �
�

(16)

Energy spectrum and the free energy density then reads:

E(p) =
√

p2 + m2, m2 = g�2 (17)

F = kBT ∫
dp
2�
ln

(

1 − exp
(

−
E(k)
kBT

)

)

(18)

this allows us to see explicitly that there is a gap in the spectrum We can write
down an expression for the Green’s function:

G(�1, �2) = ∫
dk2

(2�2)
exp

(

ik(�1 − �2)
)

)
k2 + m2

(19)

at small distances, where Δ� = �1 − �2 ≪ m−1 this Green’s function has the
same form as (9), however, when |Δ�|≫ m−1, we would see a different behavior:
G(Δ�) ∝ exp(−m|Δ�|)∕

√

|Δ�|.

3.2 Fermionic mass gap

There is another way to see how this mass gap develops for d = 1, i.e. � =
√

4�,
yielding a finite correlation length [4]. Defining the fermion operators to be [2, 5]:

 l ∝ eil� (20)

it can be shown via considering perturbative expansion in g that the following
identity holds:

∫ d�dx
[

1
2
(∇�)2 + g cos(

√

4��)
]

= ∫ d�dx
[

 ̄
�)� + g ̄ 
]

(21)

Thus, bosonic theory perturbed by (2) with scaling dimension d = 1 can be inter-
preted as a theory of free massive fermionic field.
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3.3 RG analysis
Aswe saw previously, Sine-Gordonmodel allows for two different infrared regimes:
for �2 < 8� the perturbation is relevant and we obtain gapped spectrum and for
� > 8� the perturbation is irrelevant and the field is effectively massless.

We will now apply the renormalization group approach to study this theory
near it’s critical point. First of all, we introduce a cutoff to the system |k| < Λ =
1∕a and split the Brillouin zone to the "slow" components, where |k| < Λ′ and
"fast" components Λ′ < |k| < Λ:

�Λ(x) =
∑

|k|<Λ′
eikx�k +

∑

Λ′<|k|<Λ
eikx�k ≡ �Λ′(x) + ℎ(x) (22)

And now the partition function takes form:

ZΛ = ∫ D�Λ′(x)Dℎ(x) exp
(

−S[�Λ′] − S[ℎ] − �S[�Λ′ + ℎ]
)

(23)

Introducing subscript ⟨...⟩ℎ to indicate that we averaging over field ℎ we can write
down a formal expression for an effective action after integrating out "fast" modes:

Seff [�Λ′] = S[�Λ′] − ln⟨e−�S[�Λ′+ℎ]⟩ℎ (24)

We can deal with this expression perturbatively for small g. Expanding the loga-
rithm we get:

Seff [�Λ′] ≈ S[�Λ′] − ln⟨1 − �S[�Λ′ + ℎ] +
1
2
�S2[�Λ′ + ℎ]⟩ℎ + ...

≈ S[�Λ′] − ⟨�S[�Λ′ + ℎ]⟩ℎ −
1
2
(

⟨�S2[�Λ′ + ℎ]⟩ℎ − ⟨�S[�Λ′ + ℎ]⟩2ℎ
)

+ ...

We have in the first order as was shown in [1]:

⟨�S[�Λ′ + ℎ]⟩ℎ = g ∫ d�dx⟨cos
(

�(�Λ′(x) + ℎ(x))
)

⟩ℎ

=
g
2
∑

�=±1
∫ d�dx exp(i���Λ′)⟨exp(i��ℎ⟩ℎ

expanding this for small �:

⟨exp(i��ℎ⟩ℎ ≈ 1 −
�2

2
⟨ℎ2⟩ℎ ≈ 1 −

�2

4�
dl, where dl = dΛ

Λ
= Λ′ − Λ

Λ
(25)
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Inserting this into the the expression forSeff and rescalingmomentum (Λ∕Λ′)k′ =
(1 + dl)k we obtain action in the old form but with renormalized value of g:

Seff [�Λ′] = S[�Λ′] + g

(

1 +
(

2 −
�2

4�
dl
)

)

�S[�Λ′] (26)

And the renormalization group equation for g is:

g′ = g

(

1 +
(

2 −
�2

4�
dl
)

)

→
dg
dl
=
(

2 −
�2

4�

)

g(l) (27)

Integrating this equation we can explicitly see why the perturbations with the value
of � < 0 are relevant and perturbations with � > 0 irrelevant:

g(L) =
(

L
a

)2−d

, where d =
�2

4�
(28)

as was discussed before, relevant perturbations, upon increasing the length scale,
lead to the strong coupling regime, while irrelevant perturbations (d) fade out as
L is increased.

Figure 1: Phase diagram of Kosterlitz-
Thouless RG equations.

Considering the second order ex-
pansion gives us renormalization of �
i.e. scaling dimension d. This is not
so involved as it is a rather long deriva-
tion and since it is not the main focus of
this paper, we would present the final
result. Technical details can be found
in [1]. Second order correction to the
effective action allows to derive the fol-
lowing RG equation for scaling dimen-
sion d:

dd
dl
= −Ag(l)2d(l)3 (29)

where A is a nonuniversal numerical
constant. These two equations known as Kosterlitz-Thouless RG equations:

dg
dl
=
(

2 − d
)

g, dd
dl
= −Ag2d3 (30)
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Figure 2: Magnetoresistivity data for various temperatures. TA = 100.16K >
TB > ... > TM = 97.88K. Graph is taken from [10].

with the phase diagram depicted on Fig. 1. This phase transition first occurred
in 2D X-Y spin model. One of the most interesting features of this model is the
existence of vortex-like excitations [7] which drive phase transition. In the dual
1D sine-Gordon description these excitations are described by the field �. It is
well known that the equations of motion for � allow for topologically nontriv-
ial solution - kink, which is analogous to 2� phase shift acquired circumventing
the vortex in 2D X-Y model. BKT phase transition was probed both numerically
[8] and experimentally [9] in various 2D models. In [10] electrical properties of
T l2Ba2CaCu2O8 thin films were examined and magnetoresistivity just above the
Tc (Fig. 2) was found to be in agreement with theoretical picture (Fig. 1). But can
we experimentally probe 1D sine-Gordon model directly? Turns out, the answer
can lie in the realm of topological phases of matter which we will discuss in the
next section.

4 Edge
First let us see how scalar field theory can arise on the edge of the simplest � = 1∕m
FQH state. We will closely follow derivation presented in [5]. The bulk FQH state
can be effectively described by the 2 + 1D U (1) Chern-Simons theory with the
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following action:
S = − m

4� ∫ d�dxdy"���a�)�a� (31)

We will assume that this system covers lower half-plane of our 2D space with the
boundary in x direction. Chern-Simons action is not gauge invariant but we can fix
this problem introducing the boundary counter-terms for the gauge transformation
a� → a� + )�f :

Sbdy = −
m
4� ∫ d�dxf ()0a1 − )1a0) (32)

restricting the gauge transformation to be zero on the boundary f (x, y = 0, t) = 0
and choosing the gauge condition a0 = 0 and regarding the equations of motion
for a0 as a constraint, we obtain for the Chern-Simons theory the following con-
dition: f�� = 0 which we substitute to (31) and integrating by parts we obtain the
following scalar field theory:

Sedge = −
m
4� ∫ d�dx)t�)x� (33)

where we introduced a scalar field via Chern-Simons gauge field: a� = )��. This
derivation can be generalized to the generic FQH states described by several gauge
fields. The resulting edge theory is described by the so-called K-matrix theory:

Sedge =
1
4� ∫ d�dx

[

KIJ)t�I)x�J − VIJ)x�I)x�J
]

(34)

where KIJ is a symmetric integer-valued matrix and VIJ is renormalized charge
velocity matrix.

4.1 Fractional Topological Insulator
Here we will consider a slightly more complicated model - a Fractional Topo-
logical Insulator (FTI) with filling fraction � = 1∕m where spin projection Sz is
conserved. This means we have two spin species and the edge theory is described
by the following Lagrangian density [12]:

 = 1
4�

∑

�,�′=↑,↓

(

K��′)t��)x��′ − V��′)x��)x��′
)

(35)
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withK = m�z. Introducing new field variables' = m
2
(�↓+�↑) and � =

1
2
(�↓−�↑)

and performing Legendre transformation we can write down Hamiltonian of the
edge theory in a rather concise form:

Hedge = ∫ dx u
2�

[

mg()x�)2 + (mg)−1()x')2
]

(36)

where g = 1 if V↑↓ = 0 and g > 1 if V↑↓ < 0 (g < 1 if V↑↓ > 0). Fermionic creation
operators in this theory are given by  †

� =
1

√

2��
eiK��′��′ . Coupling this edge to

superconductor effectively introduces the following term to the edge theory:

SC = Δei� 
†
↑ 

†
↓ + ℎ.c. =

Δ
��

cos(2m� + �) (37)

where Δ is the induced superconducting gap and � is superconducting phase. As
we saw previously in this paper the behavior of Δ under RG is given by [12]:

dΔ(l)
dl

=
(

2 − m
g

)

Δ(l) (38)

Instead of coupling this theory to superconductor we can turn onmagnetic field
which would introduce coupling a different coupling, instead of  †

↑ 
†
↓ we would

have a series of n electron backscattering terms  †
↑ ↓ ∝ exp(inm(�↑+�↓)) leading

to the following perturbation:

HM =
∞
∑

n=1
∫

LM

0
dxan[Fnei(2n') + ℎ.c.] (39)

It was shown in [13] that if the sector where the magnetic field is present is long
enough LM ≫ LT , where LT =

u
kBT

, the system would be governed by a sine-
Gordon Hamiltonian leading to a Kosterlitz-Thouless RG equations:

drZ
dl

= (2 − mg)rZ (40)

dg
dl
= −Ar2Zg

2 (41)

where A is nonuniversal constant, rz ∝ a1∕Ec, and Ec is a high energy cutoff.
Physically phase transition diagram allows to separate conducting and insulating
phases as depicted in Fig. 3. This result means that we probably should be able
to detect FTI phases measuring conductance on the edge of a 2D crystal varying
temperature and magnetic field.
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Figure 3: Kosterlitz-Thouless phase diagram for FTI in magnetic field. Dashed
line separates conducting and insulating phases. Figure is taken from [13].

5 Conclusion
In this term paper we reviewed 1D sine-Gordon model and presented derivation
of renormalization group flows and showed that they represent RG flows of 2D
X-Y spin model which was probed in several experiments as we mentioned briefly.
We also discussed how these results can be applied to the edge theory of Frac-
tional Topological Insulators and presented several recent results suggesting that
topological phases of matter can be detected by experimental study of their edge
properties, which must exhibit conducting and insulating edge phases in accord
with KT phase diagrams.
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