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Abstract

Strongly coupled systems are difficult to study because the perturba-
tion of the systems does not work with strong couplings. However, the
gauge/gravity duality and the ultraviolet-infrared connection enable to
study the low energy regime of the gravity. The fundamentals of holo-
graphic Wilsonian renormalization is introduced with the example of free
massive scalar fields. Finally, the crucial point of the holographic Wilso-
nian renormalization group and further questions will be discussed com-
pared to the previous renormalization group methods.
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1 Introduction

By its nature of strong couplings, the strongly coupled systems have not yet
been well studied by perturbation. One approach to study the strongly coupled
systems is looking at the low energy regime of the system by integrating out the
high energy part. In the case of gravity, we can use the gauge/gravity duality
and the UV-IR connection to set up the holographic Wilsonian renormaliza-
tion Group. In this paper, I will review the basics of holographic Wilsonian
renormalization group, which involves the gauge/gravity theory duality and the
Wilsonian approach to the renormalization group[RG].

The gauge/gravity duality is the concept that the gravity in the bulk space
has a correspondence with the gauge theory on the boundary of the bulk space.
Anti de-Sitter/Conformal Field Theory[AdS/CFT] is a good example to study
the duality; the physics in a geometrically AdS space is exactly same as the
physics of the quantum field theory on the boundary space. In this paper, I will
use the duality that the gravitational field in the bulk is asymptotically AdS,
and the boundary field theory is N -4 super Yang Mills theory. The duality
enables to understand the gravity by studying the boundary field theory.

The Wilsonian RG transforms an action with coupling constants to the new
action and the new coupling constants. The transformation integrates out the
high energy microscopic degrees of freedom, and return the macroscopic degrees
of freedom. The newly calculated action and the coupling constants by the
scaling transform are different from the old ones, but the symmetries of the
action are all preserved. Hence, one can study the physics up to desired scale
by the repeating the transformation. In this paper, I will focus on the low
energy physics by integrating out the high energy regime as well as setting the
cut-off energy scale Λ0.

In the holographic Wilsonian RG, the high energy part of the boundary
theory(Λ > Λ0) is integrated out, and this corresponds to the integrated out
bulk region of z < ε0. We will see that the radial direction z in the bulk can be
interpreted as the scale Λ on the boundary field theory as well as the radial flow
in the bulk is related to the RG flow on the boundary field theory [4]. In this
review, I will briefly present the duality of bulk and boundary, the construction
of holographic Wilsonian RG on a classical gravity regime.

2 Methods

In this section, I will introduce the methods to set up holographic Wilsonian
RG. To begin with, I will present the bulk geometry and the boundary field
theory used in the setup[4].
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2.1 The Geometric Picture of Bulk & Boundary

2.1.1 Relation Between the Bulk & Boundary

Maldacena’s work on AdS/CFT presents that the radial coordinate in the
AdS bulk space is associated with the energy scale on the boundary field theory[6].
Susskind and Witten presented[7] that the high-energy theory, ultraviolet(UV)
region1 in the boundary theory is associated to the low-energy, infrared(IR)
region in the AdS bulk, and vice versa. Hence we can explain UV-IR con-
nection in terms of the bulk-boundary correspondence. The figure 1 repre-
sents the boundary theory(top) with the energy scale Λ, and the bulk geome-
try(bottom) with the radial coordinate z. As the energy scale in the boundary
decreases from Λ0 > Λ′ > Λ, the radial coordinate in the bulk increases from
(z = ε0) < z < (z = ε). The boundary is the limit where z → 0. Here, Λ0 and
ε0 are the cut-off for the energy scale in the boundary theory and the radial
coordinate in the bulk. I will revisit later how the cut-off scale is determined.

Figure 1: The top is a figure to describe the boundary field theory with the
energy scale Λ, and the bottom corresponds to the bulk with the radial scale
z. The red-shaded area is where the energy scale is small(IR region). As we
integrate out the high energy part, the energy scale goes from Λ0 to Λ′, and
eventually Λ at the IR region.

1The terminology of ultraviolet(UV) and infrared(IR) is originated from the black body
radiation.
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2.1.2 N -4 Super Yang Mills Theory

To study the gravity in the bulk, we use N -4 super Yang Mills theory2. The
N -4 super Yang Mills theory is a 4 dimensional boundary theory, and the theory
is dual to type IIB string theory on the AdS5×S5 bulk geometry. By truncating
to the lower energy regime, which have only massless fields in the type II string
theory, which is supergravity. The supergravity provides an approximation for
the gravity in the low energy regime. By taking the large N limit(N →∞), the
non planar Feynman diagrams are suppressed by powers of 1/N . Thus we get
the classical gravity approximation[8].

2.1.3 Asymptotically AdS bulk space

As explained in 2.1.2, we are interested in the AdS geometry, and the asymp-
totic AdS geometry to study the effects of RG. I will closely follow Faulkner’s
paper[4]. To study the geometry, let’s introduce the metric

ds2 = gMNdx
MdxN ≡ −gttdt2 + giid~x

2 + gzzdz
2 (1)

gMN only depends on z. By separating the z and the Euclidean part(t, xi),
one can get the equation on the right hand side. The metric components gtt,
gii, and gzz are determined by the choice of the coordinate. In any case, gtt
is a monotonically decreasing function of z. The asymptotically AdS can be
calculated from the limit z → 0. In contrast, as we go to the interior region
of the bulk, we increase z. The time interval ∆t at the boundary is shifted
as the local proper time∆τ ' √gtt∆t. Therefore, we expect the proper time
decreases in the deeper interior bulk. Motivated by this, we can expect lower
energy(IR) of the boundary theory as we go deeper into the bulk geometry,
and high energy(UV) of boundary is related to the outer region of the bulk.
From this relation, we find the UV-IR connection in terms of the bulk-boundary
correspondence, and choose z coordinate as the energy scale of the boundary
theory.

* Note: We can introduce the ADM formalism to study the radial flow of
the bulk as we set the z direction to the energy scale of the boundary. The work
on the radial flow by ADM formalism is done by Boer and Verlinde[10]

2.2 Holographic Wilsonian RG Formalism

2.2.1 The Effective Action

To begin with, we first set a cutoff, and integrate out the UV region in the
boundary to get an effective field theory for the boundary theory.

Choose a boundary at z = ε in the bulk. Then we can define the bulk action
with a scalar field φ as following

S =
( ∫

z>ε

dd+1x
√
−gL(φ, ∂Mφ)

)
+ SB [φ, z = ε] (2)

2N is the number of spinor supercharges.
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Here, the bulk action is separated into two parts. The integration of Lagrangian
L inside the cutoff region in bulk(z > ε), and the boundary action in the bulk
SB . The above action is given by integrating out φ degrees of freedom in the
region z < ε. Later, one will see that the effective action SB in the bulk is dual
to the Wilsonian effective action IUV of the boundary field theory.

2.2.2 Flow Equation

So far no condition has been imposed on the boundary scale ε. Therefore,
for the arbitrary scale ε, one get the flow equation

0 = −
∫
z=ε

ddx
√
−gL+ ∂εSB [φ, ε] +

∫
z=ε

ddx
δSB
δφ(x)

∂zφ(x) (3)

where the Lagrangian is

L = −1

2
(∂φ)2 − V (φ) (4)

The equation of motion can be calculated by implementing (4) into (2) and
varying the action.

1√
−g

∂M (
√
−g)gMN∂Nφ)− ∂V

∂φ
= 0 (5)

with the boundary conditions (z = ε)

Π =
δSB
δφ

, Π ≡ −
√
−ggzz∂zφ (6)

The Π is the canonical momentum along the z direction. Coming back to the
flow equation, using 6,

∂εSB [φ, ε] = −
∫
z=ε

ddxPi∂zφ−
√
−gL) = −

∫
ddxH (7)

One get the Hamilton-Jacobi equation, and the equation shows that the flow is
generated by the Hamiltonian. Using 4 and 6, one get more explicit expression
for the flow equation

√
gzz∂εSB [φ, ε] = −

∫
z=ε

ddx
√
−γ
( 1

2γ

(δSB
δφ

)2
+

1

2
gµν∂µφ∂νφ+ V (φ)

)
(8)

where γ ≡ detgµν = ggzz

2.2.3 Choice of Cutoff ε

To describe the physics at the fixed point, one use the generating functional
with the bulk action and the counter-term

eI[J] ≡
〈
e
∫
JO〉 = lim

ε→0
eS0[φc,z≥ε]+Sct[φc,z=ε] (9)
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S0 is the bulk action, and Sct is the counter-term of the action. φc is the classical
field. Compared to the fixed point, one can express the generating functional
with boundary action

eI[J] = eS0[φc,z≥ε]+SB [φc,z=ε] (10)

If we start the initial value of ε at 0, we can get the above generating functional
for any ε. To expand the correlation function in terms of the low frequency ω
or small momentum k, the generating functional with the boundary action (10)
is simpler to calculate than (9). We choose to put the cutoff z = ε where we
can not analytically expand the bulk action SB in terms of ω or k. The lose
of analyticity means the loss of the degrees of freedom as we integrate out the
geometry.

2.3 Flow Equation and CFT Deformation

The boundary action in the bulk SB [φ, ε] is dual to the effective action on
the boundary IUV [Φ,Λ]. By applying the alternative quantization of φ, one can
simplify the relation between these two effective actions. I will first present how
one can associate the two actions. Later I will review the CFT deformation in
terms of double-trace coupling.

2.3.1 Field Quantization and Power Expansion

The bulk scalar field φ can be quantized into two ways - one is the stan-
dard quantization, and the other is the alternative quantization. In the first
one, Dirichlet boundary condition is imposed on the field φ in the AdS space.
Neumann boundary condition is imposed on the bulk field φ in the latter case.
Applying the alternative quantization on the bulk field, the scalar field φ is as-
sociated with the expectation value of the dual single-trace operator O in the
boundary field theory. If one expand the boundary action SB in terms of the
field φ, one will have terms of order φ, φ2, ..., φn. From the above correspon-
dence, each term corresponds to O, O2, ..., On. Up to some renormalization, we
find that SB and IUV are related by a Legendre transformation.[?] The explicit
calculation is given in the appendix of [4].

2.3.2 Free Massive Scalar Case

To provide an example, we introduce the free massive scalar fields to the
bulk theory

L = −1

2
(∂φ)2 − 1

2
m2φ2 (11)

Plug the Lagrangian into the boundary action SB , and expand it in the mo-
mentum space,

SB [ε, φ] = Λ(ε) +

∫
ddk

(2π)d
√
−γJ(k, ε)φ(−k)− 1

2

∫
ddk

(2π)d
√
−γf(k, ε)φ(k)φ(−k)

(12)
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Here, J(k) is related to the coupling for the single-trace operator related to
O. Similarly, f(k) is related to the coupling for the double-trace operator O2.
During the expansion, the following notations were used.

kµ = (−ω, ki), ddk = dωdd−1ki, k2 ≡ Σik
2
i , kµkµ = −gttω2 + giik2 (13)

Plugging the boundary action given in the (12) into the flow equation (8), one
get the equations for the cutoff energy Λon the boundary, f , and k at the
boundary z = ε.

1√
−γ
√
gzz∂εΛ =

1

2

∫
ddk

(2π)d
J(k, ε)J(−k, ε) (14)

1√
−γ
√
gzz∂ε(

√
−γJ(k, ε)) = −J(k, ε)f(k, ε) (15)

1√
−γ
√
gzz∂ε(

√
−γf(k, ε)) = −f2(k, ε) + kµkµ +m2 (16)

With the given equations, we can finally calculate the renormalized couplings.

2.3.3 Flow Equation

As I stated at the beginning, we are studying the classical gravity approx-
imation. Therefore, the field φ and the corresponding momentum Π should
satisfy classical equation of motion. the equation of motion is

∂zφ = − gzz√
−g

Π (17)

∂zΠ = −
√
−g(kµk

µ +m2)φ (18)

The couplings that satisfy the above equations are given by

f = − Πs√
−γφs

, J =
1√
−γφs

(19)

With a given initial couplings f0, J0 at the boundary z = ε0, we find

√
−γJ(ε) =

√
−γ0J0

u(
√
−γ0f0) + v

(20)

√
−γf(ε) =

γ(
√
−γ0f0) + s

u(
√
−γ0f0) + v

(21)

where γ0 is the value of γ defined at the boundary z = ε0. and r, s, u, v are
defined by the matrix (

r s
u v

)
= M(ε)M−1(ε0) (22)

where M is defined by

M(z) ≡
(
−π1(z) −π2(z)
φ1(z) φ2(z)

)
(23)

the φ1(z), φ2(z) are the two independent solutions, and they form a basis.
π1(z), π2(z) are the canonical conjugate momenta for each of the field.
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2.3.4 Example: Flow of Double-Trace Couplings in the Vacuum

The deformation of the boundary theory corresponds to the continuum limit
of the coupling transformation. Here, we are going to use the vacuum example
to derive the double-trace couplings. In the vacuum, i.e., zero momentum pure
AdS space, the metric is defined as

ds2 =
R2

z2
(dz2 + ηµνdx

µdxν) (24)

Plugging the metric into (14), we get

ε∂εf = −f2 −∆∆− + df (25)

with the notation

∆ =
d

2
+ ν, ν =

√
d2

4
+m2, ∆=d−∆ (26)

For simplicity, we will set R = 1. As mentioned in the previous section 2.3.1, the
two different quantizations leads to different duality between the bulk field and
the boundary field operator. In the standard quantization(Dirichlet boundary
condition), φ is dual to O+, and the dimension of the operator is ∆. For alter-
native quantization(Neumann boundary condition), φ is dual to O−, and the
dimension of the operator is ∆−. Using the notation assigned above, we reach to
the conclusion that the double-trace coupling f in the alternative quantization
has dimensions 2ν(−2ν). By writing f = f̄ + ∆−, find

ε∂εf̄ = −f̄2 + 2νf̄ (27)

And the equation is identical to the double-trace β-function found in the field
theory [?].

3 Discussion

In this paper, I have introduced the holographic Wilsonian RG. First, we
use the supergravity in the classical sense. This classical gravitational theory
in the AdS/CFT space bulk is dual to the N -4 super Yang Mills theory on the
boundary of the space. Promoting the UV-IR connection, we can integrate out
the geometry of the bulk space, leaving z > ε. This region has a duality with
the boundary theory with energy lower than Λ. The alternative quantization
on the bulk field theory φ provides the relation that the bulk field theory φ is
the Legendre transform of the boundary field operator O. Using this relation,
we can see the flow equation of the bulk theory to the RG flow of the couplings.
The double-trace coupling is especially significant as it is associated with the
deformation of the action.

This paper succeeded in constructing a holographic Wilsonian RG to the
classical low energy gravity approximation. Compared to old literature[10] that
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the renormalized theory is non-local and depend on the entire bulk space, the
Wilsonian approach determines that the new region after the high momenta
geometry is integrated out is independent of integrated out region.

In the review, we used the free massive scalar field. However, in other cases
such as vector fields, there can be a region of gapless degrees of freedom in
the interior bulk. If this is the case, we can not simply make the statement
that integrating out the bulk degrees of freedom is identical to integrating out
boundary degrees of freedom at the cutoff scale. In this case, we can still
expand the effective action of the boundary theory IUV with a power series
of local operators, but we can not expand the bulk boundary action SB . The
boundary action SB depends on all regions in the bulk. If the gapless states
exist in the bulk, one should separate the gapless modes out to calculate the
action in a power series expansion.
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