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1. Introduction: Physics and Computational Complexity

This paper concerns the fundamental hardness of solving particular com-

putable problems. A good example of this kind of problem is the Traveling

Salesman Problem (TSP): given a list of cities and the estimated time to go

from each city to another, can one travel through all of the cities, returning

to one’s starting point, in less than a given maximum time? While the state-

ment of this problem is fairly simple, there is a $1-million dollar bounty for

a proof that a computer can solve arbitrarily large instances of this problem

in an amount of time that is polynomially bounded in the size of the prob-

lem statement (abbreviated “PTIME” or just “P”), or that no such algorithm

can exist [1]. There are at the time of this writing 116 recorded attempts on

“The P-versus-NP page,” one of which survived peer review and has not been

debunked (and that one doesn’t claim to actually resolve the question) [2].

A computational complexity class is a set of problems solvable under spec-

ified runtime or memory bounds. The Traveling Salesman Problem is a pop-

ular representative of the computational complexity class NP, short for non-

deterministic polynomial time. NP it contains those problems for which an-

swers can be verified by a computer program in polynomially bounded time.

In the TSP example, if we are provided a suggested route, it’s easy to check

whether the total length adds up to less than the allowable maximum - if so,

the suggested route satisfies the TSP instance. The hard part is deciding the

best route(s) to check, as there are in general exponentially many possible

routes. A theoretical “non-deterministic” computer would be able to try all

of the possible solutions in a sort of enlightened superposition (more power-

ful than quantum superposition), and decide afterward which branch it was

supposed to have taken. A regular, deterministic computer can simulate this

process but requires an exponentially long time to try all of the possibilities.

P vs. NP asks whether a more sophisticated algorithm might do this in P. For

a recent guide to P vs. NP, see Scott Aaronson’s survey [3].

Our paper is not particularly concerned with implementation of solver al-

gorithms or differences in the hardware upon which they run. A foundational

result in computational complexity theory is the Church-Turing thesis stating

the equivalence in computability between different models of computation [4].

Informally, this is usually extended to the claim that any two classical comput-

ers, however constructed, asymptotically approach the same robust complexity

classes as one scales up the size of the input problem [5]. For the purposes of
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this paper, we will take this to be the definition of a robust complexity class : a

complexity class independent of the computer on which it runs. Usually this

means defining complexity classes broadly enough that a constant or polyno-

mial speedup of any algorithm would still land in the same class. There is for

robust complexity purposes no asymptotic distinction between Blue Waters

and the earliest vacuum tube computers. The practically relevant differences

are absorbed into polynomial degrees and constants (that obviously differ by

many orders of magnitude). Challenges have appeared to the Church-Turing

thesis from quantum computing [6] and even some less-powerful models [7],

but we mostly ignore quantum computing in this paper, focusing on classi-

cal examples. Also, rather than attack the TSP directly, we will focus on

easier-to-analyze equivalent problems.

It is natural to wonder what computational complexity has to do with

physics. The practical but unexciting answer is that many computational

physics tasks, such as some models of protein folding [8], extracting dynamical

system equations from data [9] and even some Ising models [10] [11] are in the

harder regions of NP. Much of the literature on how phase transitions relate to

computational complexity exploits this fact, transforming abstract computable

problems into questions about the ground state(s) of Hamiltonians [11]. There

are more fundamental reasons why physicists should pay attention to complex-

ity theory. One argument surrounding the ”black hole firewall paradox” claims

that the physics of the event horizon might depend on whether certain experi-

ments could be performed with the (presumed quantum) computing resources

available within the observable universe [12]. Others claim (though to evalu-

ate such claims is beyond the scope of this paper) that P vs. NP may affect

foundational principles of quantum mechanics [13]. A lecture a the Perime-

ter Institute’s 2016 “It from Qubit” summer school titled “Why Physicists

Should Care About the Complexity Zoo” discusses how recent developments

in quantum theory connect to computational complexity [14]. Computational

complexity in this sense relates not to a particular computer or algorithm, but

to the rules of what algorithms and computers could exist. We really ask,

“what questions do the universe allow to be easy?”

1.1. The Classes. The idea of “hierarchy” in computational complexity comes

from a classic result known as the “Time Hierarchy Theorem,” which shows

that there is at least a partial ordering on complexity classes ([15] p145). An-

other key concept is reduction:
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Definition 1.1. Consider two classes of computational problems, A and B.

A reduces B if ∃ a polynomial-time algorithm to convert any instance of

B into an instance of A, such that a solution of this A instance implies a

corresponding solution of the B instance.

If A reduces B, then A is at least as hard as B. The Time Hierarchy Theo-

rem and the use of reduction allows us to classify problems by their complexity:

hence we refer to “complexity classes.” We concern ourselves with a particular

set of robust complexity classes. The polynomial hierarchy includes multitudes

of mathematically distinguished classes involving constructions with oracles,

provers and other abstract objects. We will not concern ourselves with these

details, instead focusing on P, NP and a few interesting related classes. For a

full treatment of complexity classes on which this short list is based, see [15],

from which this list is derived.

• P - problems decidable in polynomial time (polynomial in the problem

size), often regarded by computation theorists as the class of tractable

problems (though this need not be the case, as there is no restriction on

polynomial degree or coefficients). Example: matrix multiplication.

• NP-Intermediate (NPI) - problems solvable in non-deterministic poly-

nomial time, but which don’t reduce everything in NP.

Example: factoring integers.

• NP-Complete (NPC) - problems that reduce everything in NP, and

are contained within NP (the hardest problems in NP). Example: TSP.

• coNP - the complexity class of proving that an NP problem instance,

such as TSP, has no satisfying solutions. Possibly harder than NPC.

It is widely suspected (again see [15]) that these classes are all distinct.

2. Connection to Phase Transitions

Much effort has gone into trying to intuitively express what makes NP

problems hard. Somewhat surprisingly, NPC problems tend to be easy in

practice, despite being the hardest problems within NP. A common theme

among articles referenced here is that most instances of a given NPC problem

are easy, either because they have so many solutions that a simple guess-and-

check algorithm would probably hit one almost immediately, or because they

are obviously unsatisfiable.

The main thrust of this line of study is that there appears to be a phase

transition separating the usually satisfiable levels of constrainedness from the
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usually unsatisfiable levels. Decisions are tricky near the boundary. A solver

that attempts to build up solutions to a problem near the boundary will find

many promising starts that take much time and lead nowhere.

Easy
Usually Satisfiable
Underconstrained

Easy?
Usually Unsatisfiable
Overconstrained

Hard
Sometimes Satisfiable

Ratio of constraint number to solution size

Figure 1. As we increase the constained-
ness of an NP-Complete problem, we expect
a sharp, discontinuous transition from a bulk
phase in which almost all instances are satisfi-
able to one in which almost all instances are un-
satisfiable, represented by the thick, black line.
Around it, there is a region that is thought to
be most difficult for decider algorithms, repe-
sented by the blurry pink region.

As discussed by Vardi [16], the

overconstrained phase has not been

definitively established as easy. This

might be analogous to NP vs. coNP.

In the underconstrained phase, a

solver will usually find a satisfying

certificate very quickly - at that point,

the solver is finished. In contrast, a

solver that has failed to return a cer-

tificate after running for some time

has not necessarily proven that the

instance is not satisfiable - it might

just be looking in a wrong part of the

space. Vardi’s review concludes that the overconstrained region might be bet-

ter labeled “less-hard” than easy.

2.1. Generalities: Quenched Randomness & The Replica Trick. Most

studies on this topic involve instances of problems or corresponding physical

models with a random coupling strength between each microscopic site or

unit pair, known as quenched disorder [11]. This is the key attribute that

distinguishes an Ising spin glass from a simple Ising model. A spin glass may

hence have a random, complicated structure of local and global energy minima.

Studies of quenched disorder commonly apply the replica trick to simplify

their calculations. Following discussion in [11] and using the notation Z̄ for the

average of a function Z, we may write the partition function for the average

of N copies of a quenched system,

Z(J)N =

(∑
C

exp(−H(C, J))

)N
=
∑
C1...CN

exp(−
N∑
i=1

H(Ci, J)) (1)

where H is a temperature-including Hamiltonian that depends on a coupling

scale J and microscopic coupling configuration C. The physical intuition is that

by replacing an average over an ensemble with an ensemble of an average,

we remove the complicated differences between random instances from the
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calculation. The “trick” is then to take an analytic continuation from integer

n to n = 0, using the Taylor expansion of Zn = exp(n lnZ) to rewrite the free

energy for a single copy of the system as

F (J) = −kBT lnZ = −kBT lim
n→0

(Z(J)n − 1

n

)
(2)

As further discussed in [11], the analytic continuation used in the replica trick

is not mathematically rigorous in all cases, but its applications are well-studied

and its results often usable as a guide for more rigorous techniques. Another

aspect discussed in [11] is to look at where replica symmetry breaks, suggesting

more complicated dynamics.

2.2. Graphs as Spin Glass. In 1986, Fu and Anderson reduced the NPC

Graph Partitioning problem to finding the ground state of an Ising spin glass

Hamiltonian [17]. This result motivated subsequent studies, including the

much greater attention paid to boolean satisfiability (as we discuss in section

3). While this is not the most prominent example, its chronological precedence

and relative simplicity make it a good starting point.

We define a graph as a set of vertices V = {v1...vn} and edges E = {(vi, vj) :

i, j ∈ 1...n}. We define a coupling parameter α to be probability of a random

vertex pair to be connected by an edge. Following the work of Fu and Anderson

[17], we assume n to be even and define the NPC problem: what is the smallest

ε for which we can split V into two equally sized subsets V1 and V2 such that

fewer than ε edges connect vertices in V1 to those in V2? Fu and Anderson

construct an Ising model Hamiltonian by associating a spin si to each vertex

vi, such that si = +1 if vi ∈ V1, and si = −1 if vi ∈ V2. They define a

constant coupling scale J and Ising coupling parameter Ji,j = J if (vi, vj) ∈ E,

and Ji,j = 0 otherwise. The Hamiltonian (in our notation, which differs from

theirs) is

H = −
∑
i,j

Ji,jsisj = −J
(1

2
N(N − 1)α− 2ε

)
(3)

This implies that ε = H/2J +N(N − 1)α/4, and we have reduced the original

problem to that of finding the ground state for H. Fu and Anderson then note

that there should be a phase transition between large α implying a highly-

connected phase, and vanishing α implying a mostly disconnected phase. They

show the existence of a phase transition using the replica trick. They state

(about the local energy minima in an Ising spin glass):
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If there are too many local minima, sitting very close to each other,

the transition between neighbouring minima would involve O(1)

spins, there will be no rigidity of the low temperature phases and

hence no phase transition (e.g. the infinite-range antiferromag-

netic model), and the optimisation will be easy. Computation-

ally non-trivial cases arise when local minima are numerous but

not excessively numerous, the distances between them large but

not of the order of N. These are features shared by the SK spin

glass, and we expect the existence of a spin-glass-like transition

in these systems to reflect the difficulty involved in optimisation

([17], p1613).

Related to Fu and Anderson’s work, [11] discusses the use of the Potts

model to understand percolation. A connected component or cluster in a

graph is a subset of the vertices U ⊂ V such that each vertex pair vi, vj ∈ U
are joined by some path through edges between vertices in U . The percolation

phenomenon is a phase transition between a mostly disconnected phase in

which there are many small clusters, and a mostly-connected phase in which

graph is dominated by a single large cluster. An analytic continuation used

in [11] reproduces known results from graph theory regarding cluster size and

number. We take this example as a sort of appetizer to the more prominent

question of boolean satisfiability.

3. Boolean Satisfiability

To set up a general boolean satisfiability problem, we start with a set of n

boolean (binary) variables V = {xi : i ∈ 1...n, xi ∈ {0, 1}}. We may construct

formulas by combining these variables with boolean operations. For brevity,

we will restrict our attention primarily to K-SAT: Let ∨ be the logical OR

operation, and ∧ be the logical AND. Let x̄i be the negation of xi (1 if xi = 0,

0 if xi = 1). We construct K-SAT formulas of the form:

(v1,1 ∨ ... ∨ v1,K) ∧ ... ∧ (vM,1 ∨ ... ∨ vM,K)

for some M ∈ N, where each vj,k is an arbitrary xi or x̄i. In other words,

K-SAT is a conjunction of disjunctions of variables and their negations. We

call each of the M disjunctions as a clause and define a coupling parameter

α = M/n to be the ratio of clause number to variable number. K-SAT is

NPC when K ≥ 3. Reductions in NPC imply that any K-SAT with K ≥ 3
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(or any NPC problem, including the TSP) is for robust complexity purposes

equivalent to 3-SAT.

3.1. 2-SAT’s Continuous Phase Transition. The salient feature of 2-SAT

is that it is equivalent to an implication graph ([15], p184). Given a clause

(xi ∨ xj) with any i 6= j ∈ 1...n, we define 2 directed edges representing the

implications x̄i =⇒ xj and x̄j =⇒ xi. Restricting the clause length to 2

allows us to identify nodes of this graph with variables and their negations.

This is not true for higher values of K. In 3-SAT, for example, we may take the

clause (xi∨xj∨xk). From this clause, we get the implications x̄a =⇒ (xb∨xc)
and (xb ∨ xc) =⇒ xa, where a, b, c are any permutation of i 6= j 6= k ∈ 1...N .

A K-SAT implication graph with K > 1 naturally contains implications to

and from clauses of length K − 1. This allows simple graph theory methods

to solve and analyze 2-SAT, but not higher K values.

Two original proofs that 2-SAT has a continuous phase transition at crit-

ical ratio αc = 1 from the usually-satisfiable to usually-unsatisfiable phase

were published simultaneously in 1992 ([18], [19]), and reference [19] claims

that there existed another simultaneous (unpublished) manuscript titled “On

random 2-SAT” by W. Fernandez de la Vega. Fernandez de la Vega’s later re-

view article [20] provides a centralized narrative of this and related discoveries

as of 2001. These proofs relate the unsatisfiability of a 2-SAT instance to the

presence of particular path structures containing a variable to its contradic-

tion. The number of variables that are fully constrained is continuous across

the critical threshold αc [21], which does not hold for higher K.

3.2. Phases and Clustering in Solutions of Random K-SAT. Much of

the interest in phase transitions as a paradigm for complexity flows from the

paper “Critical Behavior in the Satisfiability of Random Boolean Expressions”

by Scott Kirkpatrick and Bart Selman (1994) [22]. Kirkpatrick and Selman

use finite size scaling to determine the point of the critical transition in K-SAT

for several values of K above 3. One may understand the background of this

technique from the derivation of equation 9.261 in Goldenfeld’s textbook ([23]

p282). In a physical system such as an Ising model, let L be the (finite) system

size, T be the temperature, Tc be the critical temperature in the asymptotic

infinite-size limit, J(T ) be the temperature-dependent scale of coupling be-

tween microscopic units (Goldenfeld calls this number “K,” but we want to

avoid confusion with the K in K-SAT), and ξ(J(T ), L−1) be the (finite system)
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correlation length. Goldenfeld expands around T = Tc as

L

ξ(J(T ), L−1)
= A+B

(
T − Tc
Tc

)
L1/ν + h.o.t. (4)

% Unsatisfiable

Figure 2. Qualitative schematic of finite size
scaling, similar to figure 9.11 in [23]. Each
curve is a physical system or problem of dif-
fering size L. At the critical point, the ratio of
size to correlation length ξ or % unsatisfiable
instances becomes size-independent.

where ν is the commonly-defined crit-

ical exponent, and A and B are con-

stants. At T = Tc (equivalently

J(T ) = J(Tc)), this ratio always at-

tains the same value. Kirkpatrick and

Selman use an analogous technique to

derive their figure 3.A, using α as the

analogous variable to J(T ) and the

fraction of unsatisfiable instances as

analogous to L/ξ(J(T ), L−1). They

estimate the critical ratio of clauses

to variables as αc = 4.17+
−0.05.

Martin, Monasson and Zecchina

describe in their 2001 review article

[11] the use of the replica trick to an-

alyze K-SAT. Conceptually, their picture follows that of Monasson, Zecchina

and others in [21] that distinguishes K-SAT for K ≥ 3 from the K = 1, 2 cases

by the emergence of a discontinuity in the average fraction of variables that

are fully constrained at αc. They also note that an analysis of where replica

symmetry breaks shows a clustering phase in the space of solutions to K-SAT

(which we discuss at the end of this subsection).

A later paper by Achlioptas, Naor and Peres titled “Rigorous location of

phase transitions in hard optimization problems” [24] analytically proves a

bound for the critical ratio for K-SAT as αc(K) ∈ (2K ln 2−K, 2K ln 2). Their

technique is based on the fact that for a random variable X,

Prob(X > 0) ≥ 〈X〉2 / 〈X2〉 (5)

In their case, X is a measure of satisfying assignments for a K-SAT instance

F weighted by a function w(σ, F ), where σ is an assignment of the variables

in F . They choose a weight function such that: 1) w(σ, F ) = 0 if σ does not

satisfy F 2) w penalizes assignments that satisfy more variables/negations in

an average clause than would a random assignment, which prevents equation

5 from becoming trivial as it would under a naive weighting.
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Mèzard, Mora and Zecchina explain the clustering idea more deeply in

another article [25]. Let S be the set of solutions (satisfying assignments) in

a K-SAT instance. Let w and z be 2 distinct solutions. We define a step

through solution space as inverting a constant number of variable assignments

in w to produce some w′ that is also a solution. We define a path from w

to z as a sequence of steps that starts with w as the 1st input and produces

z as the last output. Well below the phase transition (α << αc), we expect

that with high probability, ∃ a path through solution space from w to z ∀w, z.
Just below the phase transition we enter the clustered phase, in which we

may write the solution space as a disjoint union S = S1 ∪ S2 ∪ ... such that

Sm ∩ Sl = ∅ ∀m, l, ∃ a path with high probability from w to z if w, z ∈ Sm
for some m, and there probably @ a path from w to z if w ∈ Sm, z ∈ Sl when

m 6= l. In other words, as we approach αc from below, we enter a sort of mostly

disconnected small-cluster regime, but where solutions are still numerous. As

we pass αc and enter the overconstrained phase, we expect solutions to become

rare. The article acknowledges that a clustering phase also appears in XOR-

SAT, a known P problem, so it alone is not capable of distinguishing P from

NP. Still, it is reminiscent of the percolation phenomenon in section 2.2 and

interesting enough to mention.

3.3. Coppersmith’s Decimation for Boolean Classification. So far, we

have not discussed approaches that explicitly mention the renormalization

group (RG) in analyzing complexity theory. We now turn our attention to a

2008 attempt by Susan Coppersmith to construct an RG-based classification of

boolean functions [26]. Let F (x1, ..., xn) be a boolean function of the variables

x1, ..., xn. F could be for example a K-SAT instance, but we need not restrict

to this case. Coppersmith defines the following decimation procedure:

F ′(x1, ...xi−1, xi+1, ..., xn) =

F (x1, ...xi−1, 0, xi+1, ..., xn)⊕ F (x1, ...xi−1, 1, xi+1, ..., xn)
(6)

where ⊕ denotes the binary exclusive OR (XOR) operation that is 1 if its

inputs are different, 0 if they are the same. F ′ is a function of 1 fewer vari-

able than F . Coppersmith notes that one can write a boolean function in

polynomial form:

F (x1, ..., xn) = A00...00x̄1...x̄n−1x̄⊕ A00...01x̄1...x̄n−1xn ⊕ ...⊕ A11...11x1...xn (7)

using the standard multiplication operation. The coefficientsAx1...xn = F (x1, ..., xn)

for a random boolean function are essentially independent random variables.
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For many general classes of boolean formulas, the probability of a randomly

chosen such coefficient being 1 approaches 1/2 exponentially fast with the num-

ber of decimations. Since this is a fixed point of the RG transform, Copper-

smith names it the generic phase. Many restricted classes of boolean function

either approach a different fixed point or approach the 1/2 fixed point more

slowly. Based on these observations, Coppersmith conjectures that easily com-

putable boolean functions might be written as a non-generic-phase function ⊕
a generic-phase but restricted “remainder” term. At the time of this writing,

Coppersmith’s conjecture remains unproven.

4. Conclusions and Further Reading

The link between phase transitions and computational complexity is not

proven. Moshe Y. Vardi’s skeptical presentation at the 2012 Workshop on

Finite and Algorithmic Model Theory [16] summarizes two common doubts:

1) experiments requiring exponential time that prevents use of large instances

2) problems in P showing structures otherwise associated with hardness. We

might also consider: 3) reliance on non-rigorous methods like the replica trick.

None of these criticisms falsify the conjecture that hardness relates to phase

transitions. They might be a good starting point for future work on the topic,

knowing what has been done and where it may appear deficient.

We have focused on the most classic examples of NP and phase transitions,

leaving out very interesting discussions on the TSP and other problems [11]

[27] [28], as well as newer studies of modern algorithms for random satisfiability

[29] that problem’s relationship to chaos [30], or an analogy with Bose-Einstein

condensation [31]. While it seems unlikely that the phase transition analogy

will provide a quick resolution to P vs. NP, it succeeds in suggesting an

intuitive reason for the subtle complexity of the polynomial hierarchy.
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[11] Olivier C. Martin, Rémi Monasson, and Riccardo Zecchina. Statistical mechanics methods and phase

transitions in optimization problems. Theoretical Computer Science, 265(1):3–67, August 2001.

[12] Daniel Harlow and Patrick Hayden. Quantum computation vs. firewalls. Journal of High Energy Physics,

2013(6):85, June 2013.

[13] Arkady Bolotin. Computational solution to quantum foundational problems. arXiv:1403.7686 [quant-ph],

March 2014. arXiv: 1403.7686.

[14] Why physicists should care about the complexity zoo. https://www.perimeterinstitute.ca/videos/why-

physicists-should-care-about-complexity-zoo, 2016.

[15] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. Google-Books-ID:

6Z6 QgAACAAJ.

[16] M. Y. Vardi. Phase transitions and computational complexity. http://www.lsv.fr/Events/fmt2012/program.php.

[17] Yaotian Fu and P. W. Anderson. Application of statistical mechanics to NP-complete problems in com-

binatorial optimisation. Journal of Physics A: Mathematical and General, 19(9):1605, 1986.

[18] Andreas Goerdt. A threshold for unsatisfiability. In Mathematical Foundations of Computer Science 1992,

pages 264–274. Springer, Berlin, Heidelberg, August 1992.

[19] V. Chvatal and B. Reed. Mick gets some (the odds are on his side) [satisfiability]. In Proceedings., 33rd

Annual Symposium on Foundations of Computer Science, pages 620–627, October 1992.

[20] W. Fernandez de la Vega. Random 2-SAT: results and problems. Theoretical Computer Science,

265(1):131–146, August 2001.
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