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This paper investigates the surprising prevalence of near-criticality in nature. The motivation for 

this paper stems from experimental observations of apparent criticality in living systems. Namely, 

the statistical models designed to describe natural collective behavior are often tuned to the critical 

point of the underlying model. I will present and discuss the experimental evidence that supports 

the above claim. 

Introduction 

Biological systems are generally too complex to model in every detail. Therefore our 

understanding of such systems, from networks of neurons to flocks of birds, have mostly been 

acquired through statistical modeling [1]. For example, the Ising model can be fitted to explain the 

correlating firing of neurons in a retinal neural network [2]. The disordered Potts model can 

describe the distribution of amino acids that code the B cell receptor proteins of zebrafish [3]. A 

Heisenberg-like model can be used to model the scale-free correlation observe in a flock of 

birds [4,5]. Interestingly, all aforementioned models share a peculiar feature. Specifically, the 

inferred/fitted model parameters are tuned close to the critical point of the model. Critical points 

occupy a space of measure zero in the space of possible model parameters. Therefore the observed 

criticality is surprising. In addition, physical systems tuned to the critical point have unusual 

properties such as divergent correlation length and divergent susceptibility to external perturbation. 

If criticality is indeed a general property of living system, then we may draw inspirations from the 

easily observable macroscopic world to inform our theories of microscopic systems. Further, the 

origin of such criticality is of fundamental and perhaps philosophical importance. A bird flock that 

responds maximally to the intrusion of a predator is more likely to survive than one that does not. 

One may even ask the question: “Is criticality a result of evolution?” [6]. 

While the prospect of living systems being naturally tuned to criticality is tantalizing, it is 

important to note the potential objections to such a theory. The first objection is that living systems 

may not be well-modeled by equilibrium statistical mechanics. Grinstein et. al. [7] noted in 1990 

that “self-organized criticality” is a generic property of non-equilibrium noisy dynamics. Namely, 

any system described by deterministic dynamics with a conservation law will exhibit self-

organized criticality upon the introduction of noise. More explicitly, if an equilibrium statistical 

model is fitted to describe a system governed by non-equilibrium noisy dynamics, the resultant 

model will generically be tuned to the critical point. To convincingly establish the criticality of the 

system in question, one must provide proof of criticality independent of the statistical model in 

use. The second objection is related to the model fitting procedure itself. Mastromatteo et. al. [8] 

suggested that models inferred from maximally informative experiments are more likely to be 

tuned to the critical point than not. A maximally informative experiment gather data optimally to 

distinguish one statistical model from another. However, Mastromatteo et. al. showed that “… the 

measure of the distinguishable distributions in a parametric family of models is directly related to 



the susceptibility of the corresponding model” [8]. In other words, statistically inferred model 

parameters tend to be clustered near the critical point. Thus the inferred parameters cannot be used 

as conclusive proof of criticality. Direct experimental measurement of the model parameters is 

preferred. The third objection is the existence of long-range interaction. Long-range interaction 

can trivially generate apparent scale-free correlation [9], which can be mistakenly interpreted as a 

signature of criticality. A satisfactory proof of criticality using scale-free correlation must establish 

the absence of long-range interaction. The fourth and final object, to my knowledge, is that scale-

free correlation can arise when a continuous symmetry is broken. In other words, the Goldstone 

theorem provides a trivial route to scale-free correlation without the need for the system to be 

tuned to the critical point. 

There is no question that criticality is prevalent in the statistical models of living systems. However, 

the question remains: “Is the observed criticality a fundamental law of nature or an artifact of man-

made experiment and theory?” With this question in mind, I will present recent exploration of 

natural swarms and flocks, where all aforementioned objections have been addressed to some 

degree. The method section will introduce relevant experimental and theoretical methods including: 

3D tracking, the Vicsek model of swarms, and the maximum entropy approach. The result and 

discussion section will summarize recent experiments and statistical models of natural swarms and 

flocks, including the works of Cavagna et. al. [4,10], Bialek et. al. [5,11], and Attanasi et. al. [12]. 

Finally, I will briefly summarize the lessons learned and possible future directions. 

Methods 

The discovery of criticality in living systems is heavily driven by technological advances. In 

particular, the ability to track the behavior of large groups of living systems at real time has been 

invaluable. Large system sizes help avoid rare events which may spoil the generalizability of 

research conclusions. Further, large amounts of data are needed to construct of statistically 

significant models. The most significant recent advancement, in the study of natural swarms and 

flocks, is the success of the STARFLAG program (starlings in flight: understanding the patterns 

of animal group movement) [13,14]. The authors developed an array of cameras with a trifocal 

setup as shown in Figure 1 to solve the matching problem. The matching problem is the problem 

of identifying the same bird in two sets of cameras in a stereoscopic setup. A simple stereoscopic 

setup of a left and a right camera, similar to the left and right eyes, cannot easily reconstruct the 

3D trajectories of individual birds in a large flock. The difficulty lies in the conflicting requirement 

of the 3D reconstruction problem and the matching problem. The two cameras should be well 

separated to triangulate the spatial coordinates of a bird. However, the matching problem becomes 

more difficult as the views of the two cameras become vastly different. The STARFLAG team 

solved this problem by placing a third set of cameras close to the right camera. The new camera 

helps solve the matching problem with the right camera. Then the combined information of the 

two right cameras make the matching problem with the left camera easier to solve. Finally, the left 

and right images can be combined to reconstruct the 3D trajectories of individual birds in a flock. 

It is interesting to note that one purpose of a flock flock may be to increase the difficulty of the 

matching and 3D reconstruction problems. Namely, a predator cannot easily identify and track the 

movement of an individual bird in a flock. The confusion caused to the predator is what protects 



the flock. Regardless of interpretation, the STARFLAG program gave experimentalists access to 

the real-time dynamics of flocks of birds. These data opened the gateway to rigorous analysis of 

the complex behavior of natural swarms and flocks. 

 

Figure 1 The matching problem in bird tracking is solved by a trifocal setup [13]. 

The raw experimental data collected in the STARFLAG program cannot be trivially interpreted. 

Therefore theoretical models are often used to assign physical interpretation to experimental data. 

In the traditional modeling approach, one constructs a statistical model using physical intuition 

and simplifying assumptions. The model parameters are often chosen to have well-defined 

physical meaning for easy interpretation. One such example is the Vicsek model for the swarming 

to flocking transition [15]. 

The Vicsek model is a remarkably simple model that uses microscopic rules to describe a 

collection of self-driven particles [15]. The model implements a simple rule of velocity alignment. 

Namely, “… at each time step a given particle driven with a constant absolute velocity assumes 

the average direction of motion of the particles in its neighborhood of radius r with some random 

perturbation added.”  [15] There are three free parameters for a given system size𝜂, 𝜌, and 𝑣, 

where 𝑣 is the distance a particle makes between two updates, 𝜂 is the magnitude of the noise, and 

𝜌 is the density of the particles. This model was shown to exhibit a kinetic phase transition from 

no particle transport to finite net transport. The transition spontaneously breaks rotational 

symmetry and is analogous to the swarming-flocking transition in nature. The order parameter for 

the kinetic phase transition is the absolute value of the average normalized velocity 

𝑣𝑎 =
1

𝑁𝑣
|∑�⃗�𝑖

𝑁

𝑖=1

|. 

A phase transition from no transport to net transport can be driven either by decreasing noise at 

constant density or increasing density at constant noise as shown in Figure 2. The phase with no 

particle transport can be compared with the behavior of natural swarms, whereas the phase with 

particle transport is analogous to the behavior of flocks. 



 

Figure 2 Swarm (low 𝑣𝑎) to flock (high 𝑣𝑎) transition in the Vicsek model, where 𝑣𝑎is the 

averaged normalized velocity of the entire swarm/flock [15]. 

While simple models such as the Vicsek model are easy to interpret, biases may be introduced by 

modeling assumptions. In general, if one failed to introduce an essential piece of physics in the 

model, or made an invalid assumption, then the resultant model would be inaccurate. Futher, it can 

be tricky to disentangle distinct properties of the physical system from intrinsic properties of the 

assumed model. The maximum entropy approach is an alternative procedure to construct a 

statistical model directly from experimental data in a manner that is relatively minimal and 

assumption-free. The goal of a maximum entropy is to reproduce given experimental correlations 

with the most random/least structured model. In the maximum entropy approach, one finds a model 

distribution of random variables �⃗� that maximizes the Shannon entropy 

𝑆[𝑃𝑚] = −∑𝑃𝑚(𝜎) log 𝑃𝑚(𝜎)

𝜎

. 

The model distribution 𝑃𝑚(𝜎) is also required to satisfy the experimentally observed correlations 

of the system being modeled 

〈𝑂𝑎(𝜎)〉𝑚 = 〈𝑂𝑎(𝜎)〉𝑟. 

The explicit form of the model can be constructed by the method of Lagrange multipliers 

𝑃𝑚(𝜎) =
1

𝑍
exp∑𝛽𝑎𝑂𝑎(𝜎)

𝑎

. 

Finding the unique set of Lagrange multipliers that satisfy all constraints is a difficult problem 

known as the “inverse problem”. Fortunately approximate methods exist to solve the inverse 

problem efficiently.  

Results and Discussion 

Cavagna et. al. tracked the 3D trajectories of individual starlings in 24 flocks, each consisting of a 

few hundred to a few thousand starlings [4]. The full velocities of each starling �⃗�𝑖 was recorded, 



as shown in Figure 3A. The full velocities were used to calculate the center of mass velocity of the 

entire flock. Velocity fluctuations �⃗⃗�𝑖 = �⃗�𝑖 −
1

𝑁
∑ �⃗�𝑘
𝑁
𝑘=1  were then obtained by subtracting the flock 

velocity from the full velocities, as shown in Figure 3B.  

 

Figure 3 Velocities and Velocity Fluctuation of Individual Starlings in a Flock [4]. 

The correlation function for velocity fluctuation was defined as 

𝐶(𝑟) =
1

𝑐0

∑ �⃗⃗�𝑖 ⋅ �⃗⃗�𝑗𝛿(𝑟 − 𝑟𝑖𝑗)𝑖𝑗

∑ 𝛿(𝑟 − 𝑟𝑖𝑗)𝑖𝑗
, 

where 𝛿(𝑟 − 𝑟𝑖𝑗) is a smoothed Dirac 𝛿-function which picks our pairs of birds at separation 𝑟. 

𝑐0 is chosen such that 𝐶(0) = 1. The correlation length was defined as the distance at which 

𝐶(𝑟) decays to zero as shown in Figure 4A and B.

 

Figure 4 Correlation lengths for the orientation and magnitude of the velocity fluctuations [4]. 



The correlation length of velocity fluctuation can be seen to scale with the size of the flock in 

Figure 4C and D. This linear finite-size scaling of the correlation length 𝜉(𝑏𝐿) = 𝑏𝜉(𝐿) implies 

that the correlation function has a special scaling form. Starting from the generic scaling form 

𝐶(𝑟) =
1

𝜉𝛾
𝑔(

𝑟

𝜉
), where 𝑔(𝑥) is a dimensionless scaling function, we see that the finite-size scaling 

of the correlation function 𝐶(𝑟; 𝐿) = 𝑏𝛾𝐶(𝑏𝑟; 𝑏𝐿). By choosing 𝑏 =
1

𝑟
, we obtain 

𝐶(𝑟; 𝐿) =
1

𝑟𝛾
𝑓 (

𝑟

𝐿
). 

The above scaling form is considered scale-free because the only length scale that enters the 

equation is the size of the system 𝐿. The separation between neighboring birds, for example, is 

irrelevant. If this scale-free form holds for arbitrary flock sizes, then the asymptotic correlation 

function at infinite system size 𝐶∞(𝑟) decays as a power law 𝐶∞(𝑟) ∼
1

𝑟𝛾
. The authors extracted 𝛾 

as the slope of the correlation function versus flock size 𝐶′(𝑥 ≡ 𝑟𝜉−1 = 1) =
1

𝜉𝛾
𝑔′(1) ∼ −

1

𝜉𝛾
∼

−
1

𝐿𝛾
. The fitted value of 𝛾  is statistically consistent with zero. In addition, the data for the 

correlation function in reduced units 𝑥 ≡
𝑟

𝜉
 collapsed well onto the same scaling function as shown 

in Figure 5. The derivative of the correlation function is shown in the inset. The slope of the 

derivative, marked with a red line in the inset, is an estimate of 𝛾. The small value of 𝛾 indicates 

that the correlation function barely decays. Small 𝛾  implies that the correlation of velocity 

fluctuation of birds 100m apart is about as strong as that of birds 1m apart. The long-range 

correlation observed in both the orientation and speed of birds far apart allows the flock to act as 

one mind to external perturbation such as the intrusion of a predator. The authors noted that scale-

free correlation in the “soft” degree of freedom (orientation) may be attributed to broken rotational 

symmetry by Goldstone theorem [4]. However, the scale-free correlation in the “stiff” degree of 

freedom (speed) must be due to some other mechanism. The authors suggested that the flock may 

be tuned to a critical point with maximal susceptibility [4]. 

 

Figure 5 Data collapse for the correlation function of velocity fluctuations [4]. 

What is the microscopic origin of the observed scale-free correlation? Follow-up theoretical and 

experimental studies were performed to address this question. Intuitively, one may expect a bird 

to align the orientation and magnitude of its velocity to those of neighboring birds in order to 

maintain the cohesion of the flock. Such preference for alignment is analogous to the behavior of 



a collection of spins in the equilibrium statistical mechanics context. Bialek et. al. exploited the 

connection between bird flock and spins rather literally [5,11]. They used the maximal entropy 

method to determine a Heisenberg-like statistical model for flocks of starlings. The statistical 

model was designed to be minimal. The assumed model allow each bird to interact with 𝑛𝑐 of its 

neighbor with strength 𝐽. 𝑛𝑐 and 𝐽 are the only adjustable parameters 

𝑃({𝑠𝑖}) =
1

𝑍(𝐽, 𝑛𝑐)
𝑒𝑥𝑝 [

𝐽

2
∑ ∑ 𝑠𝑖 ⋅ 𝑠𝑗

𝑗∈𝑛𝑐
𝑖

𝑁

𝑖=1

], 

where 𝑠𝑖  is the velocity fluctuation of bird 𝑖 . The fitted model was able to explain the 

experimentally observed scale-free correlation as shown in Figure 6A. More interestingly, the 

fitted interaction range 𝑛𝑐 is independent of the flock size as shown in Figure 6B. 

 

Figure 6 Correlation of velocity fluctuation from maximum entropy model and experiment [5]. 

The constant scaling of the interaction range with system size implies that each bird interacts 

strongly with a fixed number of neighbors regardless of their separations. This is an interesting 

and non-intuitive prediction. A follow-up study introduced a more complicated model  [11] 

𝑃({�⃗�𝑖}) =
1

𝑍(𝐽, 𝑛𝑐)
𝑒𝑥𝑝 [−

𝐽

4𝑣0
2 ∑|�⃗�𝑖 − �⃗�𝑗|

2
𝑁

𝑖𝑗=1

+
𝜇

𝑣0
∑𝑣𝑖

𝑁

𝑖=1

−
𝑔

2𝑣0
2∑𝑣𝑖

2

𝑁

𝑖=1

]. 

Using the above model, Bialek et. al. showed that the model parameters inferred from experimental 

data were tuned to the critical point [11]. Taking the observation literally, the authors suggested 

that individuals in a block may change the way they interact with neighbors to achieve maximum 

flock cohesion. The claim that birds change their behavior to tune its parent flock to criticality is 

intriguing. However, criticisms of such a claim exist in the literature. An obvious objection to the 

above approach is that the non-equilibrium behavior of flocking cannot be captured by equilibrium 

statistical mechanics. For instance, the neighbors of a bird will change over the course of a flocking 

event. The change of neighbors is not captured by the Heisenberg-like models. Remarkably, Mora 

et. al. showed that the conclusions of Bialek et. al. [5,11] held up even when dynamical changes 

were incorporated into the model [16]. Assuming that equilibrium statistical mechanics can 

capture non-equilibrium systems, there are still at least three major questions that need to be 

answered before the claim of self-organized criticality can be established: Is the apparent self-



organized criticality a trivial manifestation of a noisy non-equilibrium dynamics in an equilibrium 

model [7]? Is the observed criticality a trivial result of long-range interaction [9]? Is the maximum 

entropy method biased towards critical models [8]? 

The first two questions were addressed by Attanasi et. al. [12] and Cavagna et. al. [10], 

respectively. Attanasi et. al. tracked the 3D trajectories of midge swarms. They used experimental 

data to construct a Vicsek model. The density model parameter was directly measured as well as 

inferred. The data collected for the swarming insects were identical to those of the starling flocks. 

Namely, the velocities of individual insect in the swarm were recorded, and the correlation of 

velocity fluctuations were measured. The authors defined the dimensionless velocity fluctuation 

𝛿�⃗⃗�𝑖 = 𝛿�⃗�𝑖/√(
1

𝑁
)∑ (𝛿�⃗�𝑘)2𝑘 , where 𝛿�⃗�𝑖 is the same velocity fluctuation as �⃗⃗�𝑖 defined in  [4]. The 

correlation function of velocity fluctuation was defined to be 

𝐶(𝑟) =
∑ 𝛿�⃗⃗�𝑖 ⋅ 𝛿�⃗⃗�𝑗𝛿(𝑟 − 𝑟𝑖𝑗)
𝑁
𝑖≠𝑗

∑ 𝛿(𝑟 − 𝑟𝑖𝑗)
𝑁
𝑖≠𝑗

. 

The point where the correlation function first reaches zero was taken to be the correlation length 

𝜉. The integrated correlation was taken to be a proxy of susceptibility 

𝜒 =
1

𝑁
∑𝛿�⃗⃗�𝑖 ⋅ 𝛿�⃗⃗�𝑗𝜃(𝑟0 − 𝑟𝑖𝑗)

𝑁

𝑖≠𝑗

. 

In addition to correlation and susceptibility, an additional order parameter was introduced 

𝑥 = 𝑟1/𝜆, 

where 𝑟1  is the nearest neighbor distance and 𝜆 is the range of interaction. 𝑥  is related to the 

density parameter in the Vicsek model. By measuring this parameter directly, the authors 

addressed the criticism of possible bias in inferred model parameter [8]. The range of interaction 

for midges was chosen to be their average body length 𝑙, because the interaction between midges 

was assumed to be acoustic. All three order parameters 𝜉, 𝜒, and 𝑥 were directly measured as well 

as inferred from experimental data. The results from both approaches show striking resemblance 

as demonstrated by Figure 7. More importantly, the density order parameter 𝑥 was found to adjust 

with the swarm size to keep the Vicsek model near the swarming-flocking transition critical point. 

This observation established that the insect swarm exhibits self-organized criticality. The direct 

measurement of the order parameter 𝑥 ruled out the trivial explanation of Grinstein et. al. [7]. The 

authors offered two possible explanation for the observed self-organized criticality. The first is 

that insects adjust their behavior according to the size of the swarm in order to maximize the 

correlation length in the system. Namely 𝑥 is adjusted at constant 𝑁. The second explanation is 

that insects with similar behavioral pattern swarm together until the size of the swarm has grown 

to a critical value. Namely 𝑁 is adjusted at constant 𝑥. Both explanations are consistent with 

experiment. Detailed study of the behavior of individual insect will be needed to distinguish the 

two possibilities. 



 

Figure 7 Finite-size scaling of natural swarm compared with critical scaling of the 

corresponding Vicsek model. The parameters of the Vicsek model were inferred from data. [12] 

Finally, in the work of Cavagna et. al. [10], the authors used the maximum entropy approach to 

extract the range of interaction directly from experimental data instead of building a short-range 

interaction into the model. They considered the orientation of individual birds 𝑠𝑖 ≡ �⃗�𝑖/|�⃗�𝑖| and 

constructed a minimal model with alignment interaction 𝐽(𝑛) that depend on the topological 

distance 𝑛 between birds. The authors used the topological distance rather than the metric distance 

between birds because it simplifies the normalization of the two-point correlation function of 

orientations 〈𝑠𝑖 ⋅ 𝑠𝑗〉. Maximum entropy was used to construct a statistical model that reproduced 

the experimental two-point correlation function. The resultant alignment interaction was shown to 

have a much shorter range than the correlation function as shown in Figure 8. This observation 

directly addressed the criticism that long-range correlation in starling flocks may have been 

trivially created by long-range interaction [9]. 

 

Figure 8 Maximum entropy model of flock velocity fluctuation resulted in short-range alignment 

interaction J(n), but long-range correlation C(n), where n is the topological distance between 

neighbors [10]. 

In summary, many criticisms have been raised and addressed since the pioneering work of the 

STARFLAG team, which demonstrated the existence of scale-free correlation in starling flocks 



and raised the possibility of self-organized criticality [4]. Criticism of the existence of self-

organized criticality lead to the direct experimental measurement of model parameter that 

convincingly demonstrated the critical nature of insect swarms [12]. Criticism of trivial scale-free 

correlation lead to novel theoretical modeling approach which directly inferred the range of 

interaction from experimental data [10]. Mounting evidence now demonstrates that natural swarms 

and flocks indeed exhibit peculiar cohesion analogous to equilibrium systems tuned to the critical 

point. The observed critical behavior is not an artifact of the theoretical modeling approach. 

While the critical nature of insect swarm was convincingly established, the postulate of Bialek et. 

al. [1] that many biological systems exhibit critical behavior is far from verified. As evident from 

the study of natural swarms and flocks, inferred equilibrium statistical model by itself is not 

sufficient to establish self-organized criticality in living systems. Each proposed biological system, 

such as neural networks and family of amino acid sequences, need to be studied in detail. On the 

experimental side, techniques to directly track the real-time dynamics of large collections of living 

systems can acquire the most convincing evidence regarding the nature of the system. If enough 

details can be collected, then one can solve the “forward problem” of building macroscopic 

observation through microscopic rules rather than the “inverse problem” of constructing 

microscopic rules from macroscopic observations. Conclusions from the “forward problem” tend 

to be less ambiguous than those from the “inverse problem”. As an example, Attanasi et. al. directly 

measured how the information of the turning of one bird is propagated through a flock [17]. The 

measurements convincingly established the almost lossless transmission of information through 

the flock, which directly supported the existence of scale-free correlation in starling flocks. On the 

theoretical side, the regime of validity of various modeling approaches need to be clearly defined 

to make convincing predictions. In particular, the objection of “Is the maximum entropy method 

biased to produce critical models?” [8] has yet to be satisfactorily addressed. One way to make 

progress is to construct a maximum entropy model of a system which does not exhibit critical 

behavior. If the inferred model is still tuned to criticality, then maximum entropy models cannot 

be used as a signature of self-organized criticality. One particularly interesting system to model is 

a colony of bacteria, where both scale-free correlation [18] and sub-critical long-range 

correlation [19,20] have been observed. 

In conclusion, self-organized criticality has been convincingly demonstrated in natural swarms and 

flocks. However, it remains a question whether criticality is a fundamental property of living 

systems. The continuing advances in both experimental techniques and theoretical modeling 

approaches will enable us to explore the possibility of critical behavior of increasingly complex 

biological systems. By studying these biological systems, we can gain insight into the fundamental 

natures of critical behavior at the macroscopic scale as well as make connection with basic 

statistical mechanics. 
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