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The purpose of this paper is to discuss the consequences of regarding gravity as an emergent phenomena 

and how this approach is beneficial in solving long-standing problems like information loss in black holes, 

the entropy paradox, and the cosmological constant problem. Contrary to common belief, there are 

observational consequences for regarding gravity as an effective theory, and one can perform experiments 

to test such a proposal. The microscopics of the effective theory will be briefly discussed because till the 

present moment there isn�t a complete theory in which space-time is emergent. 
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1 Introduction 

  

The incompatibility of quantum mechanics with classical general relativity is one 

of the major problems in physics. One possible solution to this problem is to regard 

general relativity as an emergent property of an inherently quantum mechanical theory. 

General relativity is by construction a classical theory, and probably Nature behaves 

differently when 0≠! . In 1968, Sakharov was the first to note that space-time in general 

relativity was similar to the elasticity of matter
i
. He showed that the quantum fluctuations 

in the matter field induced the curvature term in the action. Still, his analysis doesn�t 

contain an order parameter like that of superfluids. After nearly thirteen years Unruh 

noticed an analogy between the propagation of sound in a background hydrodynamic 

flow and the propagation of scalar fields in curved space-time, whereby one can define an 

effective acoustic metric
ii
. For example, the motion of acoustic phonons is distorted by a 

crystal lattice, or in background flow field of a superfluid condensate. Based on this 

analogy many models for �black holes� in superfluids were proposed. This paper will not 

deal with this analogy, which is strictly kinematic. Instead, it will be concerned with 

gravity as an emergent property of some sort of collective behavior of a quantum theory, 

and the observable consequences of such a point of view. In section two, alternatives to 

classical black holes will be discussed. These models are based on the idea that space-

time is some sort of a gravitational Bose-Einstein condensate. The alternatives to black 

holes are free from long lasting problems of relativity like quantum information loss, 

thermodynamic instability of black holes, and the entropy paradox. In section three, a 

possible solution to the cosmological constant problem is suggested based on an analogy 

with quantum liquids. Contrary to general belief, these ideas are subject to experiments 

and can be falsified. 

 

2 Alternatives to Classical Black Holes 

 

Classical general relativity predicts that massive stars evolve toward the end of 

their life to black holes. First we will review what classical and semi-classical general 

relativity say about black holes.  

The static and spherically symmetric line element for an isolated mass M is, 
2

2 2 2 2 2 2( ) ( sin )
( )

dr
ds f r dt r d d

h r
θ θ φ= − + + + ,    (2.1) 

where the functions ( )f r  and ( )h r  are given by  

 
2

( ) ( ) 1
GM

f r h r
r

= = − .       (2.2) 

This is the well-known Schwarzchild solution. 

 At r =0 there is a dynamic singularity, and Einstein�s equations cease to exist. At 

2sr R GM= = , which corresponds to the surface of the black hole or the event horizon, 

the singularity is only kinematic and can be removed by a suitable coordinate 

transformation. Gravity is well behaved on this surface and a free-falling observer passes 

through the surface with a finite proper time. Still light falling onto the surface will 

experience an infinite blue shift. A photon with frequency ω  far away from the black 
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hole will acquire a local energy 
1

2E fω
−

= !  that diverges at sr R= . Put in other words, at 

the surface of black holes, time stops relative to a clock at infinity. This leads to an 

ambiguity in the definition of a universal time.  

This ambiguity is one of the main reasons why quantum mechanics and classical 

general relativity are incompatible. In order for the Schrodinger equation  

 i H
t

ψ ψ∂ =
∂

!          (2.3) 

to hold, a universal time needs to be defined.  This has lead to revising the laws of 

quantum mechanics
iii

 and to claims that there is loss of quantum information in black 

holes
iv

.  

There is a second problem with the semi-classical approximation used to calculate 

the entropy of black holes. When a massless field like that of photons is quantized with 

respect to the fixed Schwarzchild background, one finds that the black hole radiates 

quanta with thermal spectrum at Hawking temperature 
8

H

B

T
k GMπ

= ! v
.   (2.4) 

However, for 0≠! , the quantum effects can�t be neglected. Although it is assumed that 

the backreaction effect of the emitted radiation by the black hole is small, calculations 

show that the energy momentum components t

tT< >  and r

rT< >  of the radiation have an 
1f −  divergence at the horizon, and that wavelengths of order sR  contribute to this infinite 

blue shift factor. This implies non-locality at the scale of the black hole, and it can�t be 

removed by a suitable change of coordinates
vi

. Moreover, from (2.4), the Hawking 

temperature HT  is inversely proportional to the mass of the black hole M. Hence a black 

hole in thermal equilibrium with its Hawking radiation has negative specific heat, and it 

is unstable to thermodynamic fluctuations
vii

. The thermal radiation spectrum and energy 

conservation imply that black holes have entropy that far exceeds that of the progenitor 

star. Again there is a paradox in this case. The source of the excess entropy isn�t known. 

In the following section we will discuss a fully quantum mechanical resolution to 

the first problem proposed in [x] whereby the event horizon is regarded as a quantum 

phase transition akin to liquid-vapor transition. This suggestion might hold a solution to 

the problem of thermal instability of black holes depending on the order of the transition. 

Another solution to the entropy paradox and the above two problems was proposed in 

[xiv] such that an ultra cold gravitational condensate star replaces the black hole. Both of 

these suggestions have observable consequences and are amenable to experimental tests. 

 

2.1 Continuous Quantum Phase Transition in Space-time Vacuum 

  

There aren�t many theories that regard space-time as emergent. G. Chapline 

proposes that macroscopic space-time emerges from microscopic fluctuations in 

topology
viii

. The latter might correspond to gravitons. He suggests that the condensate 

wave function for the three dimensional anyonic superfluid
ix

 can be reinterpreted as a 

quantum wave function for space-time. Just like electrodynamics is represented on the 

quantum level by coherent states of photons, space-time can be represented as a coherent 

sum of nonlinear gravitons. The details supporting this claim are rather technical and will 

not be presented. It suffices to note that the constructed space-time wave function has a 
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long range off-diagonal order, and hence one expects a universe described by it to have 

quantum effects on the macroscopic scale. One such possible effect is that the event 

horizon of a black hole differs from the one predicted by classical general relativity 

whereby space-time vacuum rearranges itself in such a manner that time is universally 

defined
x
.  

In [x], Laughlin et al. suggest a resolution to the universal time problem by 

proposing that the event horizon is a continuous phase transition of the vacuum of space-

time analogous to the quantum liquid-vapor critical point of an interacting Bose gas. The 

classical description of the vacuum no more holds for scales smaller than a characteristic 

length ξ , which is a quantum-mechanical quantity that diverges at the event horizon. 

Before establishing the analogy, we need to discuss modeling the zero temperature 

liquid- vapor transition in quantum fluids as a quantum phase transition. 
4
He, which is a simple example of bosonic matter, is a solid at pressure above 25 

bar and at zero temperature.  As pressure decreases beyond 25 bar it melts into a liquid
1
 

with a small amount of quantum vapor pressure
xi

. It will not evaporate at zero 

temperature. Since the temperature is much lower than the condensation temperature, it is 

regarded as a pure superfluid.  

Moreover, the vapor phase of bosonic matter was experimentally observed in 

BEC. Cornish et al. performed experiments with magnetically trapped 
85

Rb BEC where 

condensate self-interaction energy is magnetically tuned from strong repulsion to large 

attraction
xii

. When the magnetic field is increased to the limit in which the interaction is 

expected to change sign, the 
85

Rb ball of vapor first contracts, which is something 

expected if the pressure decreases. However, after nearly 5 ms there is a sudden 

explosion that ejects a large fraction of the condensate. This leaves a small yet observable 

remnant of the condensate surrounded by a relatively hot cloud at about 100nK. Although 

interpreting this result is complicated by the metastability of the condensate and the 

increase in the rate of recombination into the ground state that occurs at high densities, it 

occurs abruptly where such a transition is expected, and softening of the compressibility 

heralds it. One may regard this behavior as something similar to a quantum liquid-vapor 

transition.  

The simplest model for such a transition in classical fluids is the Van der Waal 

equation of state 

TNk
V

a
PbV B=+− ))((

2
.       (2.5) 

Laughlin et al. consider the phenomenological quantum equation of state
2
 

 c
V

a
PbV =+− ))((

4

2 .        (2.6) 

The effective Lagrangian L generates such an equation 

 
2

2 2*( ) ( )
2

L i U
t m

ψ µ ψ ψ ψ∂= + − ∇ −
∂

!
! ,     (2.7) 

where 
2ψ is the density of states 

V

N=ρ , and 
43

]ln[
2 V

a

bV

bV

Vb

c
U −

−
+= . (2.8) 

                                                           
1 See fig. 1. 
2 See fig. 2. 
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At 0=T , the system has an order parameter ψ  that satisfies the Gross-Pataevski 

equation  

 ψµψψψ ])([
2

22
2

−′+∇−=
∂
∂

U
mt

i
!

! .     (2.9) 

The current conservation and momentum conservation are  

 0)( =⋅∇+
∂
∂

v
t

ρρ
 and 0)( =∇+

∂
∂

Pv
t

M ρ ,     (2.10) 

where the current density is )(
2

** ψψψψρ ∇−∇=
Mi

v
!

.    (2.11) 

The ground state of the fluid is described by the uniform solution 0ψ that satisfies 

 0)( 0

2

0 =−′ µψψU  and PVE += 0µ .     (2.12)  

Perturbing the solution 0 R Iiψ ψ δψ δψ= + + , and substituting back, one obtains 

 

2
2

2
2

( )
2

2
( ) ( )

2

R
I

I
R R

t m

B

t m

δψ δψ

δψ δψ δψ
ρ

∂ = − ∇
∂
∂− = − ∇ +

∂

!
!

!
!

,     (2.13)  

to first order.  

The dispersion relation is then 
2 2

2 2( ) ( )
2

k s

k
v k

m
ω = + !

! ! .    (2.14)  

One identifies 
sMv

ξ = !
 as the length scale beyond which hydrodynamics fails

3
.  

Since a system with negative compressibility is unstable and hence unphysical, the latter 

is replaced by Maxwell�s construction. Thus, there is only one point in the PV- diagram 

where the bulk modulus ( )
P

B V
V

∂= −
∂

 is zero. This point corresponds to the critical 

point
2
.  

 In order to investigate the analogy between the critical surface and the event 

horizon, consider the following thought experiment. Suppose that a tank filled with a 

quantum fluid that satisfies (2.6) is put on the surface of the earth. The pressure inside the 

tank increases toward the bottom of the tank due to gravity. At some point, the pressure 

reaches and exceeds the critical pressure. Sound waves incident on this critical surface 

will refract toward it just as light is refracted toward a black hole horizon. The reason is 

that the propagation speed measured by a clock at infinity vanishes.  

Consider the particular case when 
8

27

a
c

b
=  in (2.6). At the critical point,  

 
1

3
c

b
ρ = , 

227
c

a
P

b
= , c

c

c

P
v

M ρ
= , and 31 12( 1)

c c

P

P

ρ
ρ

− ≈ − .  (2.15) 

                                                           
3The same length scale can be found from the Bogoliubov solution.  



 6

Near the critical surface, 
2

0

1
c

P gz

P v
≈ −  and 

1

3

2

0 0

6
12

sv gz

v v
≈ .   (2.16) 

In order to find how sound propagates, consider small density fluctuations ρ ρ δρ→ + , 

then 
2

2

2
[ ( )]sv

t

δρδρ ∂∇ ⋅ ∇ =
∂

.        (2.17)   

This is similar to the form of the scalar wave equation  

 
2

2

1
[ ]s

s

v
v t

φφ ∂∇ ⋅ ∇ =
∂

, which is obtained from ( ) 0g g
x x

µν
µ ν

φ∂ ∂− =
∂ ∂

, (2.18) 

where the gravitational metric 
22 2 2 2 2

sds g dx dx dx dy dz v dtµ ν
µν= = + + − .  (2.19) 

 In order to retain the metric just outside the event horizon, weaken the gravity 

 

2

2

0 (1 )

z

lg g e
−

= − ,         (2.20) 

then 
3

0

22

0

1
3c

g zP

P l v
≈ −  and 

1

3 3
0

22
0 0

6
36

sv g z

v l v
≈ .      (2.21) 

The metric just outside the event horizon can be written in this form with 
3

4
s

c z
v

GM
= .  

Since the principles of hydrodynamics no more hold for length scales smaller than 

the correlation length 
sMv

ξ = !
 and time scales longer than 

sv

ξ
, sound ceases to make 

sense at the critical surface. In analogy to light, a sound quantum with fixed frequency ω  

propagating toward the critical surface reaches a point at which svω
ξ

≥  in finite time and 

decays there into soft excitations of the critical point. Hence most of the energy is 

thermalized if  such excitations are dense. Although this effect hasn�t been observed 

experimentally, its classical analogue, critical opalescence, has been observed by light 

scattering
xiii

.  

By writing down the effective Lagrangian at criticality and the corresponding 

quantum mechanical Hamiltonian,  
2

2* 4

02

3
( ) ( )

2

c
eff

c

P
L i

t m
ψ µ ψ ψ ψ ψ

ρ
∂= + − ∇ − −
∂

!
! , 

1 2 3 4

42 2 4
� �0

1 2 3 42
, , , 1

3
( ) ( )

2
i

i

c
k keff k k

k k k k k ic

Pk
H a a k k k k a a

M V

ψ δ
ρ

−
=

= + + + + +! ! ∏!
, (2.22) 

one may investigate the experimental signatures of this effect.  

One can show that the decay rate for a phonon with energy 
2 2

2

k

M
ω = !
!  is  

 3 2 2

22 2

1
( ) ( ) ( )

3

c

c

PM ω
τ π ρ

=!
!

!
.       (2.23)  
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Moreover, one regains the ideal Bose gas behaviour for low energy from (2.23) because 

the phonon (boson) becomes more sharply defined as the energy decreases.  

Reflectivity 

Low frequency phonons incident on the critical surface are transmitted or reflected 

depending on their energy.  

Let R
z

φδψ ∂=
∂

, then 
2 2

2 2 2 2 4

2

0

( ) ( ) ( )
2

z
t M

φ φ φ
τ

∂ = ∇ ⋅ ∇ − ∇
∂

! !
! ,   (2.24) 

where 
0

1 sv

zτ
∂=
∂

. 

There are transition resonances that depend on the momentum component Q in the plane 

of incidence. When Q is large, the transmission resonances occur at harmonic values 

 
2 2

0

1
( ) 2

2 2
n

Q
n

M
ω

τ
≈ + +! !

! .       (2.25) 

When the incident phonon is normal ( 0Q → ), there is a singularity, and the reflectivity 

becomes continuous
4
 with 

 

0
2

2 2

0 0

1
1

2

1 1
cosh ( ( ) )

4 2

if

R

if

ωτ

π ωτ ωτ−

" <##= $
# − >
#%

.     (2.26) 

 

Inelastic Scattering 

The critical surface is opaque to high frequency sound waves and scatters about 
1

8
of 

them back with a strong red shift. When 0 1
τ
τ

> , the incident phonon decays with a 

hundred percent probability to three phonons, and only one of the three can escape the 

surface. This gives a differential cross-section
5
 per unit area A to scatter sound of 

frequency ω  back in a solid angle dΩ  and frequency 'ω ω<  as 

 
2

27
3 [1 3 2 cos( )

' 16

d A
x x x

d d

σ θ
ω π ω

= − −
Ω

,     (2.27) 

where 
'

x
ω
ω

= . Thus, the critical surface looks red, while being an energy thermalizer. 

Energy Density 

One may even calculate the energy density when 0z → . The energy density at a distance 

z from the critical surface is  

 
2

2

0

1

2 1k

k k dkE

V e
β ω
ω

π

∞

=
−& !

!
,        (2.28) 

where kω  is given by (2.14).  

                                                           
4 See fig. 4. 
5 See fig. 5. 
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As 0z → , 
3 5

0 2 2
2

0.128( ) ( )B

E M
k T

V
=

!
.        (2.29) 

The divergence predicted by Planck�s law 
2

4 30( )( ) ( )
30

B

E
k T

V z

τπ=
!

 is removed by 

criticality, and the specific heat is large but finite. 

 Now how does all of that relate to black holes? Assume that the event horizon is a 

quantum liquid-vapour transition. The equations of classical general relativity outside the 

black hole are obeyed except at the event horizon. At the latter, space-time reorganizes 

itself in such a way that a universal time is still defined. Locally, the properties of the 

vacuum are the same inside and outside of the vacuum. We will investigate the 

consequences on black holes based on these assumptions.  

The most general spherically symmetric metric in four dimensions is given by 

(2.1), 
2

2 2 2 2 2 2( ) ( sin )
( )

dr
ds f r dt r d d

h r
θ θ φ= − + + + . By imposing that Einstein�s field 

equations are obeyed outside the event horizon, one retrieves the Schwarzchild solution 

(2.2) with 
2

( ) ( ) 1
M

f r h r
r

= = − . Requiring that the local properties across the horizon 

are similar, ( ) ( )f r h r=  just inside the horizon; however, it converges to zero with 

opposite sign. This implies that there is negative pressure inside the black hole. 

Moreover, matter should resist falling into the horizon, which is the minimum of the 

gravitational potential. Therefore, one needs a nonzero cosmological constant inside the 

black hole, and Einstein�s equations are modified inside the black hole such that 

2

1 3

2 4
R g g

M
µν µν µν− = ,        (2.30)  

 

which corresponds to vacuum with positive cosmological constant (de Sitter space is the 

more technical term). The total energy inside the black hole is M, and the metric
6
  

 2

2
1

( )
1 ( )

2

s

s

M
if r R

r

f r r
if r R

M

" − >#
#

= $ − <#
#
%

.      (2.31) 

The singularity at the horizon is equivalent to a negative surface tension or stress to 

accommodate the negative pressure inside the black hole. Similar to a balloon, a black 

hole with pressure 
8

4 2

3

32

c
P

G Mπ
= −  will have a surface tension 

2

2

3

32

c
T

G Mπ
= − 7

. The 

tension is generated by space-time itself as it undergoes the transition. Still, it is small.  

Since we are regarding the event horizon as the critical surface, a distant observer can 

measure a finite heat capacity of the black hole. The expression is similar to (2.29), 

                                                           
6 See fig. 3. 
7 The above expressions are in proper coordinates. 
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2

2 1

2
2 2

2

0 0

2 4 2
3

2 3

( )

2 1

4 2 ( )
1.1 [ ( ) ][ ]

3 30 ( )

k

GM

c

k

B

B

f r
E k dk r dr

e

GM k T Mc

c c k T

β ω
ω

π

π π

− ∞" '
# #= $ (−# #
% )

" '
≈ ×$ (

% )

& & !

!

!

,     (2.32) 

where kω  is given by (2.14). 

Experimental signature for black holes 

If the above analogy is true, a photon incident on the critical surface of a black 

hole will decay into three photons. No such effect has been observed experimentally. 

Still, it is a prediction that can be falsified by experiments. In this picture, the break down 

of relativity must be observed experimentally as the spontaneous decay of bosons such as 

photons. Probably this can be observed in cosmic rays.  

 Moreover, black holes have a specific spectroscopic signature that can be 

observed outside the event horizon. The horizon reflects light with frequency higher than 

c time the black hole radius, while being transparent to light with frequencies slightly 

above this frequency in resonances that depend on the incidence angle. For one solar 

mass black hole the reflection and transmission resonances are in the radio frequency 

range 510 Hz≈ . 

 Just like the case of the critical surface, high frequency electromagnetic radiation 

is inelastically scattered from the black hole, and it�s normal component is red shifted. 

Furthermore, the black hole thermalizes radiation and acts as a thermal body with a finite 

heat capacity.  

 The possibility of the transition to be first order is unlikely because it is unstable 

to density perturbations. From fig. 2 perturbing the equation of state downwards causes 

the susceptibility of phonons to become negative, and the density perturbations of the 

uniform state grow. For gravity, the excitations are gravitational waves 
( )i kz t

xx yyg g e ωδ δ −= − ≈ . If the phase transition is first order, the excitations are unstable, 

and they will generate a non-uniform metric with sharp jumps. Irrespective whether it is a 

first or second phase order transition, quantum information isn�t destroyed by the black 

hole. Instead, energy is scattered as if by dark paint. 

 

2.2 Gravitational Condensate Stars as Alternatives to Balck Holes 

  

P.O. Mazur and E. Mottola extend further the idea of gravitational Bose-Einstein 

condensation of space-time, and they propose a singularity free alternative to black 

holes
xiv

. Like the black hole proposed by Laughlin et al., their gravitational condensate 

star is a compact object with de Sitter interior and exterior Schwarzschild geometry. 

However, instead of the critical surface, a thin layer of ultra-relativistic fluid whose 

equation of state is 2cP ρ= separates the two regions. Their solution is singularity free 

without an event horizon and with a universal time
8
. Moreover, it is stable to 

thermodynamic fluctuations and its entropy is far less than the progenitor star. The same 

                                                           
8 For a review of nonsingular quasi-black-holes see I. Dymnikova, [gr/0010016]   
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authors in another paper suggest the process by which the separating layer comes about
9
. 

It is based on quantum anomalies that arise in conformal theories. 

 According to their solution, there are three regions with respect to the 

gravitational condensate star, 

(1) Interior: 10 r r≤ ≤ , Pρ = − , and 2

0( ) ( ) (1 )f r Ch r C H r= = −  

(2) Shell: 1 2r r r< <  and Pρ =  

(3) Exterior: 2r r> , 0Pρ = = , and 
2

( ) ( ) 1
GM

f r h r
r

= = − .  (2.33) 

All the parameters entering the Einstein field equations are required to be continuous, but 

not necessarily differentiable. The derivation is quite simple. The only components that 

enter are the Einstein field equations for a perfect fluid, the conservation of the stress 

tensor, and the condition of continuity across the boundaries. In principle, one can solve 

the equations numerically, but an analytic solution exists in the thin shell limit. In the 

analytic solution, one will find an integration constant 1ε <<  related to the thickness of 

the shell 
3

2
sl Rε≈ .  

The entropy of the fluid within the shell is obtained from the equation of state 
2

2( )( )
8

Ba k T
P

G
ρ

π
= =

!
. The entropy 

3

2
B s B BH

M Ml
S ak R ak Sε≈ ≈ <<

! !
,  (2.34) 

where 7710 ( )BH B

Sun

M
S k

M
≈  the Bekenstein-Hawking entropy. In region (1), Pρ = −  and 

the entropy S vanishes. This is expected for a gravitational Bose-Einstein condensate 

described by a single macroscopic wave function.  

 Furthermore, the local temperature of the shell is of the order 
Bk GM

!
, and the 

gravitational condensate star doesn�t emit Hawking radiation because it doesn�t have an 

event horizon. With no such emission, it is ultra-cold and completely dark
10

. 

 The cold fluid in region (2) is confined by the surface tensions at 1r  and 2r . The 

discussion is based on the equation of state in different regions and is similar to the one in 

the previous section.  

 Although the shell is responsible for the entropy of the condensate star, it doesn�t 

contribute much to the mass of the object. The energy within the shell as measured from 

infinity is 2

(2)E M Mε≈ << . Hence, the energy density of the vacuum condensate in the 

interior region contributes to the mass of the condensate star.  

 Moreover, since the fluid in the shell has a positive heat capacity and all regions 

other than the shell are vacuum, the condensate star is thermodynamically stable. One can 

verify this stability by working in the microcanonical ensemble and maximizing the 

entropy of the shell with respect to small fluctuations.  

Observable Consequences of the gravitational condensate star 

The gravitational compact star proposed by P.O. Mazur and E. Mottola is a stable 

compact non-singular spherically symmetric solution of Einstein�s equations. Its entropy 

                                                           
9 See P.O. Mazur and E. Mottola, Phys Rev. D 64, 104022 (2001) 
10 This doesn�t preclude the fact that it might �reflect� energy, as will be discussed later. 
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is around twenty orders of magnitude less than the entropy of the progenitor. Hence, 

unlike the semi-classical case, there is no entropy paradox. The supernovae explosion of 

the progenitor star might be so violent that it sheds enough entropy to produce the 

relatively cold gravitational condensate star
11

. This might be a possible explanation of 

why there are gamma-ray bursts from distant stars, which is something unexplained until 

the present moment.  

GCS might shine more brightly because matter falling onto it is transformed into 

radiation that can escape, while a black hole �gulps� all the matter that falls onto it. As 

such, GCS might be a candidate for an energetic astrophysical source, although it doesn�t 

radiate on its own. 

  One may consider that we are living in such a GCS. This might explain the 

problem of the cosmological constant. By analyzing the data from 42 type Ia supernovae 

discovered by the Supernovae Cosmology Project, S. Perlmutter et al. found that the red-

shifted light from these supernovae is dimmer than expected if the universe were flat
xv

. 

Until recently, the only conceived solution to this problem was that there is some sort of 

dark energy in the universe that gives an outward pressure in space, and that our universe 

is expanding
12

. As such, we live in a universe with positive cosmological constant. If one 

regards the whole universe to be the condensate interior of a GCS whose radius is that of 

the universe, with the quantum phase interface replacing the horizon of the universe, then 

the estimated cosmological constant is close to the observed one, which is of the order of 

the matter density present in the universe
13

. Although this idea seems contentious, in the 

following section we will discuss how one can resolve the cosmological constant problem 

by regarding the vacuum of space-time as analogous to that of quantum liquids. 

 

3 Quantum vacuum and the cosmological constant problem 

  

Experimental evidence [xv] supports the existence of a positive cosmological 

constant that is of the order of the present matter density. If one naively applies the 

approximations of quantum field theories, one will find an estimate of the cosmological 

constant that is 120 orders of magnitude more than the observed one. This estimate is 

based on calculating the vacuum energy density as zero point energy from bosonic fields 

and negative from the occupied fermionic levels of the Dirac sea. Even if supersymmetry 

is accounted for in order to tune this estimate, the discrepancy between the theoretical 

value and the observed value is enormous. This disparity means that self-energy of the 

vacuum isn�t gravitating, which is in contradiction with the equivalence principle. By 

regarding the vacuum of quantum liquids as analogous to the vacuum in general 

relativity, G.E. Volovik proposes a solution to the cosmological constant problem
xvi

. 

 As discussed before, the motivation to regard space-time vacuum as similar to the 

vacuum of quantum liquids is that there is an effective Lagrangian metric in the latter, 

and hence some sort of gravity arises in the low energy limit. Analogy with quantum 

                                                           
11 GCS for short. 
12 Quite recently, C. Csaki et al. proposed an alternative solution [C. Csaki, N. Kaloper, and J. Terning, 

Phys. Rev. Lett. 88, 161302 (2002)]. They claim that photons emitted by supernovae turn into axions while 

propagating in the intergalactic magnetic field, and this is why the supernovae appear dimmer than what is 

expected for a flat universe. Axions are hypothetical particles that account for the left-handedness and 

right-handedness asymmetry. The CERN Axion Solar Telescope will search for them in the future. 
13 See fig. 6. 
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liquids is especially beneficial because both the effective theory and the microscopics are 

known, and hence it is a possible route from effective theories to microscopics. 

 For 
4
He and 

3
He, when temperature is reduced below 1K, one can no more 

resolve the motion of isolated atoms in the liquid. The lower the energy, the better the 

description in terms of collective mode and dilute gas of quasi-particles. This is the 

Landau picture of two-fluid model that incorporates the collective motion of the ground 

state and the dynamics of the quasi-particles in the background of the moving fluid. In the 

general relativity picture, quasi-particles may represent matter that moves in the space-

time background
14

. Moreover, interaction and zero point motion of the atoms in the 

condensate compete and provide an equilibrium ground state of the ensemble of atoms. 

This equilibrium exists even without external pressure. In the language of relativity, the 

cosmological constant in the effective theory of gravity is exactly zero without any 

tuning, and the equilibrium vacuum isn�t self-gravitating. This isn�t the whole story. The 

perturbations due to quasi-particles (or analogously matter) generate the remaining 

vacuum energy, and this is why the cosmological constant is of the order of the mass 

density present in the universe. Other possible sources of vacuum energy are fluctuations 

in the topology and the discreteness of the number of particles in a condensate. However, 

the latter might not hold for space-time vacuum. The analogy is incomplete because in 

quantum liquids there is a conservation of number of particles, while in space-time 

vacuum no equivalent conservation number is known. This indicates the need to know 

the microscopics. 

 Notice that unlike [viii], G.E. Volovik regards gravitons as low-lying excitations 

like phonons in a crystal, and not as the building blocks of space-time. However, in either 

case there is collective behavior. 

 

4 Conclusion 
 

In this paper we discussed the observable consequences of regarding classical 

gravity as an effective theory that emerges from a quantum mechanical one. Just like a 

tranquil fish that lives in a �calm� pond unaware of the incessant motion of water 

particles around it, we might be living in an intrinsically quantum mechanical space-time. 

Although there isn�t any complete microscopic theory, this approach suggests answers to 

problems in classical and semi-classical general relativity, like information loss in black 

holes, the entropy paradox and the cosmological constant problem. The proposed ideas 

can be subject to experimental tests that may falsify them. Quantizing gravity per se in 

this picture doesn�t make sense, and one needs instead to search for a microscopic 

quantum theory of the vacuum of space-time
15

.  

                                                           
14 G.E. Volovik pushes the analogy with quantum liquids further and proposes that the whole of relativistic 

quantum field theory is an emergent phenomena arising from the low energy corner of fermionic vacuum. 

Collective fermionic and bosonic modes in 3He-A give chiral fermions, gauge fields, and in some respect 

gravitational fields. See G.E. Volovik, Phys. Rep. 351, 195 (2001);[gr-qc/0005091]. 
15 At the present moment String theory isn�t a good candidate because it assumes a background metric. 

However, with the application of non-commutative geometry in String theory, this might change in the 

future. 



 13

 

References 

                                                           
i A. Sakharov, Sov. Phys. Rev. D 14, 2460 (1976) 
ii W.G. Unruh, Phys. Rev. Lett. 46, 1351 (1981)  

and Phys. Rev. D 51, 2827 (1995)  
iii G. �tHooft, Class. Quant. Grav. 16, 3263 (1999) 
iv S. Hawking, Phys. Rev. D 14, 2460 (1976) 
v S. Hawking, Nature 248, 30 (1974) 
vi N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, New 

York(1982) 
vii S. Hawking, Phys. Rev. D 13, 191 (1976) 
viii G. Chapline, Mod. Phys. Let. A Vol 7 No. 22 1959-1965 (1992) 
ix G. Chapline and K. Yamagishi, Phys. Rev. Lett. 66, 3064 (1991) 
x G. Chapline, E. Hohlfeld, R.B. Laughlin, and D.I. Santiago, Phil. Mag. B 81,235 (2001); [gr-qc0012094] 
xi H.R. Glyde, Excitations of Liquid and Solid Helium, Oxford University Press, New York (1994) 
xii S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, and C.E. Wieman, Phys. Rev. Let. 85, 1795 

(2000) 
xiii C. Domb, The Critical Point: a Historical Introduction to the Modern Theory of Critical Phenomena, 

Taylor and Francis, London and Bristol, PA (1996) 
xiv P.O. Mazur and E. Mottola [gr-qc0109035] 
xv S. Perlmutter et al., Astrophys. J. 517, 565 (1999) 
xvi G.E. Volovick, J. Low Temp Phys. 124, 25(2001); [gr-qc/0104046] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 14

                                                                                                                                                                             

 

Fig. 1. Schematic phase diagram of 

condensed He 

 

Fig. 6. Results from SCP 

 

Fig. 2. Phenomenological equation of 

state defined by (2.6). The Maxwell 

loops are indicated by dotted lines. 

 

Fig. 4. Top: Reflectivity as a 

function of 0ωτ for case 
1 / 2
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. Bottom : 

Dispersion relation of interface 

bound states plotted linearly (left) 

and logarithmically (right). 
 

 

Fig. 3. Prototype time dilation factor f(r) in the 

vicinity of a black hole event horizon. 

 

F ig. 5 . D ifferen tial cross-

section given by (2 .27). 

 
 


