
Quantum Phase Transitions of Correlated Electrons in
Two Dimensions: Connections to Cuprate

Superconductivity

Vamsi Akkineni
Department of Physics, University of Illinois at Urbana-Champaign

ABSTRACT

The physics of the two dimensional electron gas is important to
the high-Tc superconductivity in the cuprates where the behavior
of electrons in the CuO2 planes determines the properties of the
material. Due to the filling of closely spaced atomic orbitals the
electrons are strongly interacting at length scales where quantum
effects are important. The ground state of such a system could
have very different order as a function of some parameter, with
these different phases connected by quantum phase transitions.
Since the nature of the ground state is a crucial determinant
of the behavior at finite temperature, the study of these phases
and their excitations are important to high-Tc superconductiv-
ity. This paper starts with an introduction to quantum phase
transitions including the important quantum-classical mapping
described for the quantum rotor model. The coupled ladder an-
tiferromagnet model is introduced and the quantum phases and
excitations of this model are detailed. Finally, the magnetic tran-
sitions in the cuprate superconductors are described and shown
to be of the same universal class as those of the coupled ladder
antiferromagnet.
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1 Introduction

1.1 Quantum Phase Transitions

Consider a system whose degrees of freedom reside on the sites of an infi-
nite lattice, and which is described by a microscopic Hamiltonian containing
two non-commuting operators. The Hamiltonian also involves a continuously
variable parameter g that represents the essential tension between the com-
peting ordering tendencies of the two non-commuting operators. The ground
state of such a system can display a non-analyticity as a function of g due to
a ‘level-crossing’ or an infinitesimally small ‘avoided level-crossing’ between
the ground and the near excited states. Such a point displays many of the
properties of a phase transition such as singularities and the divergences of
length scales and is termed a Quantum Phase Transition (QPT).

Near the critical point, the characteristic energy scale in the system ∆
(e.g. a energy gap to the first excited state) vanishes as ∆ ∼ J | g − gc | zν .
The characteristic length scale (e.g. the length scale that describes the decay
of equal time correlations) diverges as ξ−1 ∼ J | g − gc | ν (⇒ ∆ ∼ ξ−z).

Since these singularities are in the ground state of the system, QPTs occur
at temperature T = 0 and the fluctuations that drive the transitions are due
the Heisenberg uncertainty principle, in contrast to the thermal fluctuations
that drive classical phase transitions.

1.2 The quantum rotor

The N component quantum rotor is a degree of freedom at each site of a d
dimensional lattice that can be thought of as a particle constrained to move
on the N dimensional surface of a unit sphere Ref [1]. The orientation of
each rotor is represented by a N dimensional unit vector n̂i. The momentum
p̂i of a rotor is constrained to be tangent to the surface of the sphere. The
momentum and orientation at a given site obey the commutation relations
[n̂α, p̂β] = iδαβ. Constructing the N(N − 1)/2 components of the angular
momentum

L̂αβ = n̂αP̂β − n̂βP̂α

For N=3, these reduce to the usual angular momentum operators L̂α =
(1/2)εαβγL̂βγ. The commutation relations between these quantum operators

at each site are [L̂α, L̂β] = iεαβγL̂γ [L̂α, n̂β] = iεαβγn̂γ [n̂α, n̂β] = 0. The
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Hamiltonian of this model is given by

HQ =
Jg̃

2

∑

i

L̂
2

i − J
∑

〈i,j〉

n̂i · n̂j

Clearly, the first term which represents the kinetic energy is minimized when
the orientation of each L̂i is maximally uncertain, while the nearest neighbor
exchange term is minimized by a ‘magnetically ordered’ state in which the
rotors have the same orientation.

1.3 Quantum to Classical Mapping

It is possible to map models of quantum transitions in d space dimensions to
models of finite temperature classical transitions in D = d + 1 dimensions.
This mapping enables the use of the machinery of classical phase transitions
to study quantum critical phenomena. The mapping of the classical XY
chain (D = 1) to the N = 2 point quantum rotor (d = 0) is detailed below
and the results are extended to the N = 3 point rotor. Starting from the
classical XY chain Hamiltonian with ni = (cos θi, sin θi),

H = −K
M
∑

i=1

ni ·ni+1−
M
∑

i=1

h ·ni ⇒ H = −K
M
∑

i=1

cos(θi−θi+1)−h
M
∑

i=1

cos(θi)

The partition function for this system (with periodic boundary conditions)
in the transfer matrix formalism is given by

Z =
∫ 2π

0

M
∏

i=1

dθi
2π
〈θ1 | T̂ | θ2〉〈θ2 | T̂ | θ3〉 · · · 〈θM | T̂ | θ1〉 = TrT̂M

〈θ | T̂ | θ′〉 = exp

(

K cos(θ − θ
′

) +
h

2
(cos θ + cos θ

′

)

)

Scaling Limit: Taking the scaling limit of this classical system involves iden-
tifying the length scales of the system and performing an expansion in ratios
of these length scales, keeping only the lowest order terms of the small-to-
large length scale ratios. Taking the continuum limit with length variable τ
and total length Lτ = Ma, the scaling limit is achieved at large coupling K
when the correlation length is much larger than the lattice spacing a. The
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resulting length ratios are ξ/a and 1/h̃ = a/h, the inverse of the field per unit
length. Expressing K in terms of ξ/a (from the classical result ξ = 2Ka) and
taking a→ 0 keeping τ , Lτ , ĥ, ξ fixed gives the scaling limit Hamiltonian as

Hc[θ(τ)] =
∫ Lτ

0
dτ





ξ

4

(

dθ(τ)

dτ

)2

− h̃ cos θ(τ)





The partition function now becomes a functional integral

Zc =
∞
∑

p=−∞

∫

θ(Lτ )=θ(0)+2πp
Dθ(τ) exp(−Hc[θ(τ)])

The summation over the number of windings p occurs because θ is now a
continuous function or τ . This functional integral can be interpreted as
the path integral of a particle constrained to move on a unit circle with
angular coordinate θ and p representing the number of times the particle
winds around the circle from imaginary time τ = 0 to τ = Lτ . The quantum
Hamiltonian for this particle is (with ∆ = 1/ξ)

HQ = −∆ ∂2

∂θ2
− h̃ cos θ

Mapping: The quantum-classical mapping is completed by: identifying τ as
the imaginary time and the the change a → τ as distance to time transfor-
mation; writing the Hamiltonian in terms of quantum operators; identifying
the characteristic energy ∆ as inverse correlation length 1/ξ and from the
partition function, 1/Lτ as the temperature T in the quantum model. The
quantum angular momentum operator is L̂ = 1

i
∂
∂θ

which obeys the commuta-

tion relation [L̂, n̂α] = iεαβn̂β. The Hamiltonian HQ is just the point N = 2
rotor in an external field

HQ = ∆L̂2 − h̃ · n̂

In terms of this Hamiltonian and its eigenvalues εµ, the partition function
and correlation function are respectively,

Zc = Tr exp(−HQ/T ) =
∑

µ

exp(−εµ/T )

〈n(τ)·n(0)〉 =
1

Zc

Tr
(

e−HQ/T eHQτ n̂e−HQτ · n̂
)

=
1

Zc

∑

µ,ν

| 〈µ | n̂ |ν〉| 2 e−εµ/T e−(εµ−εν)τ
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The classical transfer matrix becomes an operator that evolves the state by
an imaginary time a given by T̂ ≈ exp(−aHQ). Finally, in this quantum-
classical mapping the universal functions for the free energy density F and
the correlation function are

F =
1

Lτ

ΦF

(

Lτ

ξ
, h̃Lτ

)

→ TΦF

(

∆

T
,
h̃

T

)

〈n(τ) · n(0)〉 = Φn

(

τ

Lτ

,
Lτ

ξ
, h̃Lτ

)

→ Φn

(

Tτ,
∆

T
,
h̃

T

)

Thus the quantum mechanics of a single N = 2 rotor can be mapped onto
the statistical mechanics of a XY chain. A similar mapping holds for the
single N = 3 rotor with with L̂ now a three component operator giving the
Hamiltonian and parition function:

HQ =
∆

2
L̂
2 − h̃ · n Lα = −iεαβγnβ

∂

∂nγ

Zc(h̃ = 0) = Tr exp(−HQ/T ) =
∞
∑

l=0

(2l + 1) exp
(

− ∆

2T
l(l + 1)

)

1.4 Relevance of Quantum Phase Transitions

Although the theory of quantum phase transitions describes the behavior
of the ground state of a system, it is of fundamental importance in deter-
mining the finite temperature properties of an interacting system. This is
because most interacting systems are described in terms of emergent par-
ticles or quasiparticles which are excitations above the ground state of the
system. Therefore the ordering and properties of the ground state clearly de-
termine the nature of the quasiparticles including their dispersion, range of
interactions, occupancy and lifetime. When the ground state is in a quantum
critical region g = gc, at higher temperatures the nature of these quasiparti-
cles becomes extremely complicated due to the competing tendencies of the
different states. Understanding the physics of this quantum critical region
enables the mapping out of the physics at | g − gc |6= 0 and T 6= 0.
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Figure 1: The coupled ladder antiferromagnet. Full lines indicate the A
links while dashed lines indicate the B links

2 Correlated Electrons in Two Dimensions

2.1 The coupled ladder anti-ferromagnet

The coupled ladder anti-ferromagnet is an important model in the interacting
2D electron system, particularly the cuprate superconductors. Although it
may not represent the microscopic dynamics of the high-Tc materials, there is
experimental evidence and theory arguments that show that the universality
class of the critical point of this model and the magnetic ordering transitions
of the cuprate superconductors is the same. For a system of antiferromag-
netically coupled S = 1/2 Heisenberg spins, the Hamiltonian is Ref [3]

H` = J
∑

i,j∈A

Si · Sj + λJ
∑

i,j∈B

Si · Sj (1)

the Si are spin-1/2 operators on the sites of the coupled-ladder lattice (Fig 1),
the A links form the ladders while the B links couple the ladders. Also J > 0
and 0 ≤ λ ≤ 1. The parameter λ describes the essential tension between two
ordering tendencies of the ground state. This model has two distinct phases
at the extremities of the value of λ. At λ ≈ 1, the system is a square lattice
Heisenberg antiferromagnet with a long range spin ordering called the ‘Néel’
order. This ground state has broken spin rotation symmetry and there is a
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Figure 2: The quantum paramagnet ground state for λ ≈ 0. The ovals
represent singlet S = 0 pairs.

staggered non-zero expectation value

〈Si〉 = ηiN0n

where n is the direction of broken symmetry in spin space and ηi is ±1 on the
two sub-lattices. The excitations above this ground state are the ‘magnons’
or spin waves of spatial deformation of n. The important feature of these
excitations are that they are ‘gapless’, and there are two polarizations with
excitation energy εk = (c2xk

2
x + c2yk

2
y)
1/2, with cx, cy the spin-wave velocities

in the two spatial directions.
For λ ≈ 0, the ground state is paramagnetic because the ladders are

decoupled and spin-rotation symmetry is preserved. The neighboring spins
on a ladder form S = 0 spin singlets that preserve the lattice symmetries
(Fig 2). Excitations are formed by breaking this singlet bond to form the
threefold degenerate S = 1 state. This broken bond can hop from site to site
along the lattice and thus constitutes the quasiparticle excitation called the
‘spinon’. The energy of this excitation is ‘gapped’ and is given at low k by,

εk = ∆+
c2xk

2
x + c2yk

2
y

2∆
,

The phase diagram of the coupled ladder antiferromagnet is given in Figure 3
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Figure 3: Phase diagram of H` for T > 0 and 0 ≤ λ ≤ 1

2.2 Quantum-classical mapping for the coupled ladder

antiferromagnet

The coupled ladder model can be mapped onto the φ4 theory of a Heisenberg
ferromagnet in D = 3. The quantum partition function is expressed as a
coherent state path integral where the coherent states are a overcomplete
basis that give for the spin operator 〈N | Ŝ | N〉 = SN and represent the
minimum uncertainty spin states localized as much in the N direction as
quantum mechanics allows. For a single spin with the Hamiltonian, H0 =
−h · S, the coherent state path integral represents the partition function as
an integral over all closed curves, N(τ), on the surface of a unit sphere, where
each curve represents a history of the precessing spin in imaginary time, τ

Z0 =
∫

DN(τ)δ(N2(τ)− 1) exp
(

−iS
∫

Aτ (N(τ))dτ +
∫

dτSh ·N(τ)
)

Applying the above path integral to every site of the model, and taking
a spatial continuum limit of the fields at each site Nj(τ) into n(r, τ), a
unit length continuous order parameter field representing orientation in spin
space, gives the coupled ladder partition function

Z` =
∫

Dn(r, τ)δ(n2(r, τ)− 1) exp

[

−iS
∑

j

ηj

∫

dτAτ (n(rj, τ))

− 1

2g
√
cxcy

∫

d2rdτ
(

(∂τn)
2 + c2x(∂xn)

2 + c2y(∂yn)
2
)

]

(2)

where cx = JSa
√

(1 + λ)(3 + λ), cy = JSa
√

2(3 + λ) are the velocities, and

the coupling constant is g = (2a/S)[(3+λ)2/(2+2λ)]1/4. The tension param-
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eter is now g with g > gc corresponding to the spin gap phase with λ < λc,
and g < gc is the λ > λc Néel phase

The first term in the action is the ‘Berry phase’ term which arises from
the commutation relations of the underlying spins. This term which remains
complex in both real and imaginary time adds a complex weight to the par-
tition function and is of central importance in determining the phases and
critical points of many spin systems. However in the case of the coupled lad-
der antiferromagnet model, this term has no consequences and so is dropped.
For the remaining term, interpreting the imaginary time coordinate as a third
spatial coordinate, the path integral Z` reduces to that of a 3-dimensional
ferromagnet with n as the local magnetization and g ∼ Tcl the classical tem-
perature. Performing a coarse-graining transformation from n to a spin field
φα(r, τ), (α = x, y, z) gives for Z`

Z` =
∫

Dϕα(r, τ) exp

[

−
∫

d2rdτ
{

1

2

(

(∂τϕα)
2 + c2x(∂xϕα)

2 + c2y(∂yϕα)
2

+sϕ2α
)

+
u

24

(

ϕ2α
)2
}

]

(3)

In this mapping to the φ4 theory, the ferromagnetic order which appears for

s < sc with expectation value
√

−6s/u in the classical model corresponds to
the antiferromagnetic Néel order in the quantum model. The response and
correlation functions can be calculated along the imaginary time direction
in the classical model and analytically continued to obtain the real time
expressions. The response function to a staggered transverse applied field to
the Néel order is

χ⊥(k, ω) =
1

c2xk
2
x + cyk2y − ω2

The poles of this response functions represent the two spin wave excitations

and the dispersion
(

c2xk
2
x + c2yk

2
y

)1/2
is the same as the result given before.

For s > sc, the disordered phase of the classical model corresponds to the
quantum paramagnet phase. The susceptibility for real frequencies in this
case is:

χ(k, ω) =
Z

∆2 + c2xk
2
x + cyk2y − ω2

There is a gap to the excitations. The dispersion relation given earlier is
reproduced with a low k expansion of the pole in the above expression.
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Figure 4: Measurement of the relaxation of the Cu nuclei (a measure of the
spectral density of spin fluctuations) as a function of doping and T Ref [5].
At low doping, the behavior is of spin wave excitations while at high doping
the behavior is the signature of gapped quasiparticle excitations

3 Connections to Cuprate Superconductivity

Although the coupled ladder antiferromagnet Hamiltonian H` may not be
the microscopic model for High-Tc superconductors, measurements of spin
fluctuations in these materials have crossovers very similar to that of the
critical point of the model. This is described in the nuclear spin relaxation
experiments Ref [5] shown and described in Fig 4

The tuning parameter for High-Tc superconductors is the doping. There-
fore consider the phase diagram of the doped square lattice antiferromagnet.
This is given in Fig 5 as a function of doping δ and a parameter N which is
the number of components of each spin. The regions of the figure each repre-
sent the breaking of a specific symmetry: S, the electromagnetic U(1) gauge
symmetry which is broken in any superconducting state. M, the SU(2) spin
symmetry, broken in magnetically ordered states. C, the symmetry of the
space group of the square lattice. In this case, this symmetry is broken by a
specific type of spin wave. In cuprate materials, superconductivity appears
when the square lattice of the CuO2 planes is doped with mobile carriers.
There is close similarity between the transitions of the cuprate superconduc-
tors and the doped antiferromagnet. At low doping δ and high N , both have
stripe like structures with the distance between stripes inversely proportional
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Figure 5: Ground state phase diagram of a doped antifeffomagnet. The
labeled regions correspond to broken symmetry with S broken for all δ > 0
and large N . The insets show the nature of C breaking at large N

to δ. The region of broken M symmetry is a Néel state with magnetic or-
der, and known to exist in the cuprates. At the onset of this M symmetry
breaking, the quantum critical behavior is quite similar to that of the cou-
pled ladder antiferromagnet. At itermediate doping when the C symmetry
is broken it is expected that there is coexistence of superconducting order
and magnetic order in the form of a magnetic spin-density-wave (SC+SDW
state). At large δ the C symmetry is restored and the state is pure d-wave
superconductor (SD state).

3.1 Magnetic transitions in d-wave superconductors

For the SC+SDW to SC transition, the coarsegrained spin wave field is taken
to be

Sjα = Φα(rj)e
iKr + c.c.,

Starting from the Hamiltonian and performing the Bogoliubov transforma-
tion obtains in succession

HtJ =
∑

k

εkc
†
kσckσ + J1

∑

〈ij〉

Si · Sj
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HBCS =
∑

k

εkc
†
kσckσ −

J1
2

∑

jµ

∆µ

(

c†j↑c
†
j+µ̂,↓ − c†j↓c

†
j+µ̂,↑

)

+ h.c.

where cjσ is the annihilation operator for an electron on site j, given in mo-
mentum space ckσ, and εk is the dispersion of the electrons. The second term
is similar to the J1 term in the coupled ladder model with Sjα = 1

2
c†jσσ

α
σσ′cjσ′

here. The terms in the action involving the fields Φα(rj) are similar to those
of the φ4 theory described before. To account for the spin S = 1/2 fermionic
excitations, viz. the Bogoliubov quasi particles, an additional term in the
action is required involving the spinors Ψ1 and Ψ2 which is

SΨ =
∫

dτd2x
[

Ψ†1 (∂τ − ivF τ
z∂x − iv∆τ

x∂y)Ψ1 +Ψ†2 (∂τ − ivF τ
z∂y − iv∆τ

x∂x)Ψ2
]

,

The simplest possible coupling between the Φα and the the Ψ1,2 is

κ
∫

d2rdτ |Φα|2
(

Ψ†1Ψ1 +Ψ†2Ψ2
)

.

However, from a scaling analysis, it is seen that the coupling strength κ is
irrelevant at the SC+SDW to SC critical point. Therefore the critical mag-
netic fluctuations are entirely associated with the the Φα with no involvement
of the S=1/2 quasiparticles. This implies that the S = 1 exciton should be
stable in the SC state near the transition.

This has been observed experimentally Ref [6]. The net consequence is
that the quantum critical behavior of the coupled ladder antiferromagnet
describes this quantum transition also.

In addition to the magnetic ordering transitions, a quantum critical point
has been observed in what is the pure SC state. Working with the Hubbard
model on the square lattice, the ground state in the half filling electron
density is found to have dx2−y2 symmetry while at low density it is found
to have dxy symmetry in the relative coordinate. This can be analyzed by
introducing terms for the dxy interactions in the Hamiltonian. The classical
field theory for this model is not the standard φ4 theory but involves a cubic
term ∼ φ3 as well. There is experimental evidence for this transition also
Ref [7]. From the theory and experiments, a plausible T = 0 phase diagram
for the cuprate superconductors is shown in Fig 6.
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Figure 6: Conjectured T = 0 phase diagram for the cuprate superconductors
as a function of increasing hole concentration δ

4 Conclusions

Quantum phase transitions which happen in the ground state of interact-
ing systems have a profound influence on the finite temperature physics by
determining the nature and properties of the quasiparticle excitations. In
many cases it is possible to map the quantum mechanics of the ground state
in d spatial dimensions to a classical model of finite temperature transition
in D = d + 1 dimensions. The coupled ladder antiferromagnet model is of
central importance in studying electronic systems in two dimensions and on
square lattices. It is seen that the magnetic order transitions in the cuprate
superconductors have similar universal properties as the model with theoret-
ical arguments and experimental evidence in support.
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