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Abstract

Recent neutron scattering, nuclear magnetic rersonance, and scanning tunneling
microscopy experiments have revealed the coexistence of charge and spin density
waves and superconductivity in the cuprate superconductors and have yielded valu-
able new information on the interplay between these distinct orders. They suggest
that the theory for a High Tc superconductor can perhaps be built out of a theory of
competing ground states and quantum orders.

Trying to solve for the wave function of a system comprising of about 10?* particles
using Schrodinger’s wave equation can be an impossibly daunting task. But Landau had
outlined a powerful strategy involving quasi particles which had its first triumph when it
was succesfully used to give an essentially exact description of the low temperature prop-
erties of metals. At T=0, the system sits comfortably at its lowest possible energy state -
the many body ground state. As T rises, the system has small excitations above its ground
state and one can write a theory for the dynamics of these excitations, which are called
‘quasiparticles’, and go ahead to describe the low temperature physics of the system. Ex-
tensions of Landau’s approach have been used to explain the low temperature properties of
metals , the superfluid phases of He* and He?, the superconductivity of metals as described
by the Bardeen-Cooper-Schreifer theory and the Quantum Hall liquid state of electrons in
2 dimensions in a strong magnetic field, making it a very powerful tool for describing the
non-zero temperature physics of systems. But no successful quasiparticle-like theory has
emerged so far in the case of materials exhibiting High Tc superconductivity for much of
the accessible temperature range. One may wonder, however, whether this is surprising
since we still dont what the ground state of these materials looks like when its either normal
or superconducting.



A lot of attention has been lavished on these transition metal compounds, among which
the most important are the ceramics like YBayCuzO7 ( YBCO ) and BSCCO. In recent
years there has been a new approach for describing the properties of these materials fo-
cussing on the notion of competing ground states and competing order parameters.In this
paper, I will review the work done by theorists and experimentalists which seem to add
credibility to the theory that the ordinary superconductor is proximate in a phase diagram
to a superconductor with co-existing spin/charge density wave order.

The key point in Landau’s strategy was to properly identify the quantum ‘coherence’ or
‘order’ in the ground state of the system. As an example, take the case of free electrons in
metals. The order in the many-electron ground state exists in the momentum distribution
of the electrons - all wave vectors less than the fermi wave vector are occupied and the
rest of the wave vectors are absolutely empty of electrons. In the superfluid state of liquid
helium, the order in the ground state is the presence of the Bose Einstein condensate - the
fact that the ground state is macroscopically occupied by the He atoms. One then identi-
fies which elementary excitations perturb the order of the ground state in a fundamental
way. These can be called ‘quasiparticles’ because they are seen to transport spin, charge,
momentum and energy and their mutual collisions are described by a Boltzmann-like trans-
port equation. In metals, the quasi particles are electrons and holes, in a semiconductor,
they could be excitons which are electron-hole bound states, while in superfluid Helium,
they are phonon and roton excitations. The nature of the quasi particles - ie, the nature
of the excitations - is therefore specific to the symmetry of the ground state above which
the excitations are taking place.

1 Competing Ground States

However we may have a system which is delicately poised between two or more distinct
ground states with very different quantum ordering properties and low lying excitations.
The energies of the states may be quite close to each other and so only at low temperatures
would a particular state be chosen as the ground state. Which state is chosen as the ground
state would depend on parameters appearing in the Hamiltonian. If the parameters are
in a regime which favors a particular ground state over others, the system will choose it
to be the ground state at zero temperature and Landau’s quasi particle approach can be
applied to describe the low temperature physics of the system as long as the temperature
is low enough. The crucial point is that the nature and properties of these quasi particles
will, in general, be very different from those of the quasiparticles of other ground states.



At slightly higher temperatures, one cannot ignore the competition between the different
ground states and their respective quasiparticles and therefore the simple quasiparticle pic-
ture breaks down. The complex behavior which results wont be characteristic of any one
of the possible ground states.

Lets look at the intricate temperature dependence of a system with two competing ground
states. Lets imagine following the ground state of the hamiltonian as a function of a pa-
rameter g appearing in the Hamiltonian. If the two competing states have very distinct
quantum order which precludes the possibility of continuously moving from one kind of
quantum order to another, there must be a critical value g = g. where the ground state
undergoes a quantum phase transition from one possible state for ¢ < g. to the other for
g > g.. One now first develops a theory for the ground state for the quantum critical point
precisely at ¢ = g.. This may in general be a difficult task but for ‘second order’ quan-
tum transitions, the critical point has special symmetry properties which allow progress.
Examples will be shown below. Then we move away from the critical point and map out
the physics for non-zero | g — g. | and temperature. It is to be noted that often the point
g = ¢. is not experimentally accessible. But even in such cases it is useful to work out the
theory for the inacessible point ¢ = ¢. and then use it as a point of departure to develop a
systematic theory for accessible values of g.

Let us now show in some detail how this thing works using examples of increasing com-
plexity and discuss how it bears up to experimental observations.

2 Ising Chain in a Transverse Field

This is the simplest model of a quantum phase transition. The model is described by the
Hamiltonian ( J > 0,9 >0)

Here, 6]“ are Pauli matrices that measure the x,z components of the electron spin on
a magnetic ion in an insulator. The ions reside on the sites j of a 1 D chain. Each site has
two possible states [1>; and []>; which are eigenstates of 67 with eigenvalues +1 and -1
and thus identify the electron spin on site j as ‘up’ or ‘down’.

The two terms in the Hamilonian give rise to two very different effects. Because of
the presence of the second term, the system would like to have parallel spins for adjacent
sites in order to lower its energy, while the first term in the Hamiltonian allows quantum



tunneling between the |1>; and ||>, states with amplitude proportional to g.

For ¢ << 1, we can neglect the quantum tunneling and the preferred ground state is
the state with all spins either up or spins down. The order in this ground state is therefore
the fact that all the spins are parallel. The quasiparticles are domain walls which disturb
this order ( see Fig 1 ). A quasiparticle state, | (); > between sites j and j + 1 has all spins
up ( down ) at and to the left ( right ) of the site j ( j + 1 ). For g = 0, every such spin
configuration is an energy eigenstate and therefore dont evolve with time. For small and
finite g, the first term in the hamiltonian becomes nonzero - though still small - and the
domain walls become mobile and acquire zero point motion. We can develop a theory for
the quantum kinetics of these particles, describing their collisions, lifetime and the relax-
ation of the magnetic order using Landau’s general strategy involving quasiparticles.

In the opposite limit of g >> 1, we see from Eq 1 that the state which minimizes the
energy is the one built out of eigenstates with eigenvalue +1. These are

—>= (1>, + [1>;)

i.e. the right pointing spin which is quantum mechanically just a linear superposition
of up and down spins. The ground state therefore has all spins pointing to the right. It is
evident that this state is very different from the g = 0 ground state. This distinction also
extends to the excited states which are going to be states in which an electron in a particu-
lar site j decides to flip spin from right to left, which therefore results in a small increment
of energy of magnitude J, the smallest increment of energy possible. Quasiparticle states in
this regime therefore corresponds to a single ‘left pointing’ spin in a background of ‘right’
spins ( see Fig 1 ) instead of a domain wall. For g = oo, these states are eigenstates of the
hamiltonian and therefore stationary states but for ¢ < oo, the quasiparticles move around
and scatter among themsleves, the dynamics of which can be described using a Landau
theory of quasiparticles. This would describe the relaxation phenomenon at low T.

We now allow competition between the distinct orders at small and large g by consid-
ering values of g of order unity when the two terms of the hamiltonian acquire comparable
strength. At T=0, it is known that there is a quantum phase transition between these
states at ¢ = ¢g. = 1. It is to be emphasized that since the two orders are very distinct,
there can be no gradual crossover from one kind of ground state to another. Instead there is



a sharp critical point, a critical value of g = g. where the transition occurs. For g < g., the
ground state is qualitatively similar to the g = 0 ground state, while a state like g = 00 is
favored for g > g.. The ground state at g = g. is very special and cannot be characterized
by a simple cartoon picture. Its fundamental property is scale invariance. The ground state
correlation function (5)

Since this is a power law decay, the functional form of the correlation is only modified
by an overall factor if we stretch the length scale at which we are observing the spins.
Therefore the ground state wavefunction doesnt tell us anything about how far apart any
pair of well-seperated spins are. Therefore there is nothing that sets the spatial length scale
in this system. At T > 0, a new time scale does appear : kBLT It is a fundamental property
of the quantum critical point that this time scale, which only involves the temperature and
the fundamental constants of nature and not the coupling constant J, universally determines

the relaxation rate for spin fluctuations. The zero-momentum dynamic response function

X(w) =7, fo~ dt <&7(t),6£(0)] > e™*

Dimensional considerations following Eq 3 and the fact that the time scale is set by ,CBLT
imply that for low temperatures

x(w) ~ T=4®; (hw/kgT)

with ®; as a universal response function. The exact result for ®; is known and it is a
universal function in the sense that if we add a small second neighbour coupling to Hy, the
critical coupling g. would change slightly but & would remain exactly the same. ®; can be
replaced by the following approximation,



O = A1 —iw/T, +...)7 L

where A is a dimensionless prefactor and the relaxation rate is then given as ' =
[2tan(5)]ksT /h. This is therefore the response of an overdamped oscillator with a relax-
ation rate a function of only the temperature. One can think in terms of a dense gas of
| @ >; particles scattering off each other at a rate of order kg7 /h. The strength of the
underlying exchange interaction between the spins does not appear in the above.

For d = 2, the physics for the quantum Ising model is very similar. The response
function x(w) looks the same but the exponent of T is different. However for d = 3 (8), the
kinetic theory of the analog of the | ); > quasiparticles applies even at the critical point
and their scattering crosssection is dependent on the exchange interaction.

3 Coupled Ladder Antiferromagnet

This model is indirectly related to microscopic models of High Tc superconductivity. Con-
sider the antiferromagnet described by the Hamiltonian with J >0 and 0 < g <1

Hy = Ji jeaSi-S; + 9Ji jeBSi-S;

where S; are spin-1/2 operators on the sites of the coupled-ladder lattice with the A
links forming the ‘two leg ladders’ and the B links coupling the ladders. Again, as we will
see later, the two competing ground states have very distinct order and therefore there is a
critical value of g = g, when there is a quantum phase transition from one state to another.
g. comes out to be &~ 0.3.

For g close to unity, the ground state is the magnetically ordered Neel state as shown
in Fig 2A. The mean moment in the sites has a staggered sublattice arrangement and
therefore it is in this respect that it is different than the analogous ground state for H;
for small g. Also the nature of the quasiparticles are different. This is because H; now
has the continuous symmetry of arbitrary rotations in spin space, while H; had a discrete
spin inversion symmetry. Therefore the low lying quasiparticles correspond to a gradual
precession in the orientation of the staggered magnetic order of the Neel state. Since the



precession can be either clockwise or anticlockwise, each spin wave mode has a two fold
degeneracy. All this is therefore within the spirit of the quasiparticle picture.

For small g, the second term in the Hamiltonian H; becomes unimportant. Therefore
the electrons in a ladder dont feel the presence of the electrons sitting on other ladders.
Therefore the preferred ground state is the one in which electrons in two adjacent sites on a
ladder pair up to form a singlet state, thereby minimising the energy. The average moment
on each site is therefore zero because of the formation of the singlet bonds with S = 0.
The ground state is therefore a quantum paramagnet. The interesting thing is that inorder
to create quasiparticles one has to break the singlet bonds and replace them with a triplet
and this requires a finite energy A. The motion of this broken bond will then correspond
to a threefold degenerate quasiparticle state.

The degenerate spin wave quasiparticle state for large g as discussed previously was
twofold degenerate. Therefore we see that the quasiparticle states for the two regimes are
very different from each other.

For g < g., quantum criticality appears for 1 << kg7 << J. In this regime, The
relaxation rate is again proportional to k”% and the dynamic spin response functions has a
similar form as in earlier examples. If we describe the dynamics in the basis of the triplet
quasiparticles, these results imply that the scattering crosssection is universally determined
by the energy kgT alone. As kgT is lowered across A for g < g, the scattering cross section
evolves as a function of the dimensionless ratio kBAT alone. As a result, transport coefficients
like the spin conductance o are determined just by the ration A/kgT and the fundamental

constants of nature.

where g is the gyromagnetic ratio of the ions carrying the spin, pp is the Bohr magneton
and ®, is a universal function.

Although one cant take Hj, as a literal model for the High 7, superconductors, many
measurements of spin fluctuations carried out in the last decade display crossovers similar
to those found near the quantum critical point in figure 3. This seems to hint that the high
temperature superconductors are near a quantum critical point where the spin properties



show a universal character closely related to that of H .

The evidence has appeared in the following experiments: (1) the dynamic spin structure
factor measured in neutron scattering experiments at moderate temperatures have been
seen to obey scaling forms similar to Eq 5.(9) (2) Low temperature neutron scattering
measurements at higher carrier density show a resolution-limited peak above a finite energy
gap (10). This is a signal of the long-lived triplet quasiparticle states like those found at
low T for g < g, in Hy. It has been argued by Sachdev and Chubukov that such a peak is a
generic property of the vicinity of a quantum critical point. Sachdev proposes that another
test of quantum criticality in the spin fluctuations could be provided by measurements of
the spin conductance and comparison with Eq 7, but it has still not been found feasible to
carry out such experiments.

4 High Tc superconductors

In the cuprate superconductors, the electronic motion primarily occurs in the 2D C'uQO-
layers. The Cu ions are located at the vertices of the squares and it is commonly believed
that its only the dynamics of the 3d orbitals of the Cu thats relevent and the other orbitals
are mainly inert, and one therefore has a tightbinding model of electrons with one orbital
per site with coulomb interaction between electrons. If we make the electron density equal
to one per site, then the ground state is known to be an insulator with Neel order and this
corresponds to the state with ¢ = 1 in Fig 2A, for La;Cu)s. We can change the electron
density in the square lattice by changing the stochiometric ratio x in Lasy_,S7r,CuO4 and
this is achieved through doping. x here measures the density of holes with one electron per
site. High Tc superconductivity is observed for x greater than about 0.5.There have been
various proposals for the ground state of such a system. Author Sachdev advocates the
use of the theory for quantum critical points separating distinct ground states, to develop
a controlled expansion at intermediate coupling.

Inorder to identify possible groundstates, a minimal approach would be to assume that
they characterized by any broken syymetries of the hamiltonian. The possible symmetries
which could be broken are time reversal, the group of spin rotations, the space group of
the square lattice and the electromagnetic gauge symmetry which is related to charge con-
servation. The possibilities are therefore rich and it is hoped that they will provide an
explanation for all the experiments.

As an example the Neel state which has been discussed above can be one important



state. Its known to be the ground state when = 0. We can view it as a density wave
of spin polarization wave vector K = (Wrz) with a as the lattice spacing. It has been
observed by Y.S Lee et al, that at small ‘r # 0 there are spin sdensity waves with a
period incommensurate with the lattice and that they have a mean spin polarization at a
wavevector K that varies continuously away from (W@

Another relevant ground state is the superconducting ground state formed by the Bose
condensation of Cooper pairs which leads to a breaking of the electromagnetic gauge sym-
metry. The pair wavefunction is known to have symmetry of the d,2_,2 orbitalin the relative
coordinate of the two electrons. There is also the question of whether the wave function
also has an imaginary component with d,, or possibly s symmetry. If so then this would
break time reversal symmetry(13). If so then it has been argued that the quantum phase
transition between two such superconductors could explain the quantum criticality, like the
scaling form of Eq 5, observed in recent photoemission experiments (14).

Another state thats relevant is the one with Peierls order which is associated with broken
transalational symmetries. A competitor state to Peierls order in the quantum paramagnet
is the ‘orbital antiferromagnet’ which is a state that breaks time reversal symmetries and
translational symmetries but not spin rotation symmetries. In this state there is a spon-
taneous flow of current clockwise or anticlockwise around each plaquette ofthe square in a
checkerboard pattern. Ivanov et al proposed that closely related state os responsible for
the psuedo gap phenomena in High Tec.

Another state could be a charge density wave. This has been observed by Howald et al
(3), who used scanning tunneling microscopy ( STM ) to show the existence of static striped
charge density of quasiparticle states in nearly optimally doped BSCCO in zero field.They
observed charge density moulations The LDOS varied in stripes. They were able to obtain
this by measuring the differential conductance ( 4 ) which is proportional to the LDOS(

av
Fig 7).

5 Conclusion

Coexistence of Charge Density Waves or Spin Density Waves and superconductivity has
been shown in the lower Tc materials or in the presence of magnetic fields or both and also
recently by Howard et al in BSCCO in zero field. This suggests that the ordinary super-
conductor is proximate to a superconductor with coexisting spin/charge density wave order
and quantum criticality can be exploited to build a theory that can succesfully describe



these materials.
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Figure:’. Topographic image, gap size map, and representative line scan of

a slightly overdoped Bi;SroCaCu;0;.; single crystal.

a, Constant current image (160 A x 160 A) of the cleaved BiO surface. The vertical
streaks are the superstructural modulation. Also visible are the Bi atoms, as well
as an irregular modulation that is probably due to variations in the LDOS™ not
actual height variation. b, The superconducting gap magnitude (A) over the same
area, as measured by e voltage of the maximum in di/dV. Color scale
cormesponds to 26 mV (blue) to 100 mV (red). ¢, Differential conductance as a

function of voltage along the diagonal of a and b, from lower left to upper right.



