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Abstract

This essay presents a very brief review of the theory of the Bose Ein-
stein condensation in alkali gases concentrating more in the description of
vortices and vortex lattices and also in their recent experimental observa-
tion.

1 Introduction

Bose-Einstein condensations was directly observed for the first time in trapped
alkali gasses in 1995 in a series of Rb (Anderson et. al.) and Na (Davis et. al.)
experiments in which the atoms were confined in appropriate magnetic traps
and cooled down to extremely low temperatures of fractions of microkelvins.
The condensate was identified by the existence of a sharp peak in the veloc-
ity distribition bellow a certain critical temperature. Although the existence of
BE condensation was predicted long ago and it was accosiated with will known
phenomena such as superfluidity and superconductivity the achievements in the
creation of an almost novel BEC system renewed the theoretical and experi-
mental interest.

One of the most intriguing characteristics of BECs is the existence of persis-
tent currests that are associated with vortices which are phase signularities of
topological character. In this paper we are going to present the standard tech-
nology that is used to treat the vortexes in BEC, the Gross Pitaevskii equation,
and we are going to present experimental observations of vortices and vortex
lattices in alkali BECs.

2 'Trapped alkali gasses

Contemporary experiments use sophisticated techiniques to trap a dilute alkali
gas of about 10* — 107 atoms, such as laser and mangetic traps. Most of these
traps are simulating a harmonic potential. which is of the form:

m
Vir(r) = 5(“3452 +wiy? +wlz?) (1)

If we neglect the interparticle interaction the energy of the system is obviously:
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where {n,,n,,n.} are non-negative integers. The ground state ¢(ry,..,ry) of
N noninteracting bosons confined by the potential (1) is obtained by putting
all the particles in the lowest single-particle state (ng, = ny =n, = 0):

wo(r) = H wo(ri) = <m:h0)3/4 exp [—ﬂ(wzm2 + wyy® + wzz2)] (3)

where wg = (wzwywz)l/ 3 is the geometric average of the oscillator frequencies.

The density distribution then becomes n(r) = N|po(r)|? and its value grows
with N. The size of the cloud is instead independent of N and is given by
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and for an alkali gas is of the order of 1um. At finite temperature only part
of the atoms occupy the lowest state, the others being thermally distributed in
the excited states at higher energy. It can be shown that the radious of the
thermaly excited states is larger than dy. As an approximation lets assume that
kBT > hwpy and approximate the density of the excited states with a classical
Boltzmann distribution n.j(r) o exp[—V;-(r)/kpT] = exp[—ﬁmw%r] which
is a Gaussian with width Ry = do(kpT/hwo)'/? larger than ay,,.

Note that the Fourier transform of 3 is a Gaussian with width d;' =

—1/2
(L) in the 7t" direction and the width of the excited states is still broader
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and proportional to (kgT)'/2. We see that Bose-Einstein condensation in har-
monic traps shows up with the appearance of a sharp peak in the central region
of the density distribution both in momentum and coordinate space whereas in
a uniform gas the peak is evident only in momentum space. This is actually a
unique characteristic of trapped gasses which has importan implications both
in the experimental and theoretical analysis. Actually the initialy detection of
BEC was done both in velocity and coordinate space. In the former case, for a
non interacting gas, the trap is switched off and the expantion of the condensate
is almost ballistic. The velocities of the particles are determined from the time
of flight. In the latter the distribution of the atoms is measured directly using
light scattering techniques. The theoretical challenge is to study the effect of
two-body interactions in the shape of the distribution.

Another important aspect is the symmetry of the confining potential. In
this essay we are going to deal only with axis-symmetric potentials of the form
Vir(r) = 2(wlr? + w?2?) where 2 is the axial and r; = (22 + y?)'/2 is the
radial coordinate. Usually we characterize the assymetry of the trap by the
ratio A\ = w,/w) which for A < 1 corresponds to a cigar-shaped trap while for
A > 1 to a disk-shaped . In terms of A the ground state (3) for noninteracting



bosons can be rewritten as
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Here d; = (h/mw,)'/? is the harmonic oscillator length in the z-y plane and,
since w; = A" '/3wy, one has also d; = A\'/8d,.

The choice of an axially symmetric trap has proven useful for providing
further evidence of Bose-Einstein condensation from the analysis of the momen-
tum distribution. The Fourier transform of the wave function (4) is @o(p) x
exp[—d? (p2 +A~1p2)/2h?]. The ration of tha axial and radial widths is \/(p2)/(p? ) =
v/ and is determined only by the asymmetry of the trap. Thus, the shape of the
condensate in the z-z plane is an ellipse, the ratio between the two axis being
equal to v X\. However the distribution corresponding to the excited particles
will be spherical because of equipartition theorem. Therefore the anisotropy of
the distribution is a strong evidence of BEC.

The above picture is modified by the two body interactions. Usually two
extreme cases are taken into account that are distinguished by the ratio of the
interaction and the kinetic energy which can be shown to be:
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In the weakly interacting (near ideal) regime the above ratio is negligible and
the wave function of the condensate is in good approximation the wave function
of the non interacting gas 3.

In the strongly coupling limit (Thomas Fermi limit, TF) which is most rel-
evant to the current experiments on BECs, Jﬁf‘ > 1 and for a repulsive (at-
tracive) interaction the resulting wave function turns out to difeer significantly
from the gaussian and more specifically in is lowered (reaised) in the center and
becomes wider (narrower). This can be justified by solving the Gross-Pitaevskii
equation.

3 The Gross-Pitaevskii Equation

The Gross Pitaevskii equation is necessary for describing tha dynamics of a non
uniform condensate and thus it is useful for describing both the case of trapped
alkali gasses and also the occurence of vortices. The general idea behind that
equation is that there is a macroscopic order parameter ¥ that describes the
condensate which below the critical temperature and for a uniform condensate
is simply ¥ = /Ny /V which means that there is macrosopic occupation of the
ground state with Ny partiles and the rest N' = N — Ny particles are distributed
in the excited states with k # 0. In the Bogoliubov approximation the ground
state creation/annihilation operators are treated as numbers ag ~ ag ~ /Ny

because the ground state expectation value (a;r)ao) = Ny is macroscopic and the



occupation of the other states is less than 1. Non uniform states can be treated
by using the hamiltonian

The existence of nonuniform states of a dilute Bose gas can be understood
by considering a second-quantized Hamiltonian

B = [av [§ @+ Vi) b+ g0t100] ©)

where 9(r) and ¢t(r) are the usual field operators, T = —h>V2/2M is the
kinetic energy operator for the particles , V;,(r) is an external (trap) potential,
and the last term trepresents a short range interaction between the particles of
the form =~ ¢gd(r-r'). The coupling constant g for a dilute cold gas is related
to the so called s-wave scattering length a by g ~ 4mwah®/M'We can derive
the Gross Pitaevskii equation by using the above Hamiltonian to generate the
equation of motion of the Heisenberg operator 1 (r,t)

in P00 ), B = (€ 4+ V) bet) + 99 @) D) G D). (D)
Then we take into account the macroscopic occupation of the ground state and
substitute in the above ¥ (r,t) = ¥(r,t) + ¢(r,t) where ¥(r,t) is the order
parameter that characterizes the condensate and dg(r,t) is a a field operator
referring to the noncondensed particles. Keeping only terms to zero order in ¢3
gives the so called time-dependent Gross Pitaevskii equation:

., 0¥(r,t)
ih TR

for the condensate wave function ¥(r,¢). The stationary solutions of this
non linear “Schroediger-like” equation are obtained by substituting ¥(r,t) =
T(r) e~ ™#t/h o get the stationary GP equation:

= [T+ Vir + g2 (x,t)]"] T(r, 1) (8)

(T + Vir + g|¥)T = p¥ (9)

Essentially all studies of trapped atomic gases involve the dilute limit (7i|a|® <
1, where 7 is the average density of the gas), so that depletion of the condensate
is small with N’ = N — Ny o< \/n|a]>? N < N. Typically n|a|? is always less than
10~3. Hence most of the particles remain in the condensate, and the difference
between the condensate number Ny and the total number N can usually be
neglected. In this case, the stationary GP equation (9) for the condensate wave
function follows by minimizing the Hamiltonian:

1
H:/dV [\IJ (T+V;£r)‘1'+§g|‘ll|4 (10)

subject to a constraint of fixed condensate number No = [ dV |¥|? ~ N (readily
included with a Lagrange multiplier that is simply the chemical potential u).

IScattering lengths of atomic gasses frequently used in experiments are: a = 2.75 nm for
23Na, a = 5.77 nm for 87Rb, and a = —1.45 nm for 7Li.



It is instructive to rewrite the GP using rescaled dimensionless variables.
Let us consider a spherical trap with frequency wo and use dp, dy 3 and hwo as
units of length, density and energy, respectively. By putting a tilde over the
rescaled quantities, Eq. (9) becomes

[V + 7 + 8n(Na/do)5* ()] 6(5) = 2id(F)

In these new units the order parameter satisfies the normalization condition
J dr|¢|? = 1. Obviously the only important parameter is Na/ apo- It is worth
noticing that the solution of the stationary GP equation (9) minimizes the
energy functional (10) for a fixed number of particles and can be written as
follows:
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The first term corresponds to the quantum kinetic energy coming from the
uncertainty principle and is usually called “quantum pressure" and vanishes for
uniform systems. The second term is the effect of the external potential and
the third is a self consistent mean field potential coming from the distribution
of particles.

The equilibrium of the quantum pressure and the mean potential gives rise
to a length scale called “correlation” or “healing” length because it is a measure
of how fast the order parameter heals back to its bulk value when perturbed
localy (is in a vortex core):
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In case of trapped systems we can use the central density to get a magnitude
for the healing lenght in which case: ¢ = [87n(0)a]~'/2. In the TF limit, this
choice implies that

2 . 6 _ dO
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Thus the TF limit provides a clear separation of length scales £ < dy € Ry, and
the (small) healing length £ characterizes the small vortex core. In contrast, the
healing length (and vortex-core radius) in the near-ideal limit are comparable
with dg and hence with the size of the condensate.

We can use the Gross-Pitaevskii to investigate the profile of a single vortex.
In order to simplify the analysis a little bit we only consider the two dimensional
case of a uniform gas in which a vortex of strength 1 (the phase around it changes
by 2m) is represented by a wave function of the form ¥(r) = +/n x(r), where n
is the density of the condensate far from the origin and x(r) is defined by:

xm e ()., (13)
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Figure 1: Radial wave function f(r . /£) obtained by numerical solution of the
stationary GP equation for a straight vortex line.

The kinetic energy per unit length is given by
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From these equations we can see that the boundary conditions for f and more
specifically f — 1 for r; > £ and the centrifugal barrier in the second term
forces the amplitude to vanish linearly within a core of radius = £ (see Fig. 1).
This core structure ensures that the particle current density j = nv vanishes
and the total kinetic-energy density remains finite as 7, — 0. A numerical
analysis of the GP equation can give us the energy of the vortex which is
E, ~ (mh®n/M)In (1.46R/¢) where R is the size of the condensate. This comes
from the kinetic energy of the flow circulating around the vortex and also the
compression of the condensate close to the core. In the case of a trapped gas
with a single vortex and axial symmetry the analysis is a bit more complicated.
Rotational symmetry implies that the macroscopic wave function is of the form:
If we consider an axisymmetric trap with oscillator frequencies w, and w, and
axial asymmetry parameter A = w,/w, the rotational symmetry suggests the
following form of the wave function for a vortex of unit strength along the z
axis:

U(r) = ei¢|lIl(rL,z)|. (15)

The centrifugal energy [compare Eq. (14)] gives rise to an additional term
1Mv? = h*/2M7r? in the GP equation (9).A vortex of strength ¢ with ¥ oc e¥?
also satisfies the GP equation but its energy increases like ¢ which is larger
than the energy of g vortices of unit strength. Therefore it will be unstable and
collapse into unit vortices.

In general, the density for a central vortex vanishes along the symmetry
axis, and the core radius increases away from the center of the trap, yielding a
toroidal condensate density (see Fig. 2). This behavior is particularly evident
for a vortex in the TF limit Na/dy > 1, when



Figure 2: Contour plot in the zz plane for a condensate with 10* 87Rb atoms
containing a vortex along the z axis. The trap is spherical and distances are
in units of the oscillator length d = 0.791um. The interaction parameter is
Na/d = 72.3. Luminosity is proportional to density, the white area being the
most dense.

£ 22 ) ( e 22 )

~ 1—> - L Zle(1-> - = — Z). 16
sz ) (1- 5 - T - 5 o). o)
The density vanishes within a core whose characteristic radius is £ in the equa-
torial region |z| < R, because of the term £?/r%. Then it flares out with in-
creasing |z|. The TF separation of length scales ensures that the vortex affects
the density only the immediate vicinity of the core; this behavior can usually
be approximated with a short-distance cutoff. Now lets consider a condensate
in equilibrium with a rotating trap at angular velocity Q around the Z axis.
The hamiltonian density of Eq.(10) acquires an additional term —%*QL, ¥ [?],
where L, is the usual z component of the angular-momentum operator. Thus
the Hamiltonian H' in the rotating frame becomes

1
H’:H—QLZ:/dV [xp (T+V,5T—QLZ)\I!+§g|lI’|4 (17)

where the variables in the integrand are now those in the rotating frame. Simi-
larly, the GP equations (8) and (9) acquire an additional term —QL,¥.

In the case of an axissymmetric trap the states of the condensate can be
labeled by L, quantum number. For a vortex free condensate the ground state
energy in the lab frame and in the rotated frame are equal because (2L.) ¥ =0
and the expression of the energy is the same. For a vortex of unit strength
(QL,) T = AT and the contribution of the  term is NAQ, where N is
the total angular momentum of the condensate (N is the number of particles).
Therefore E () = E; — NAS2 and the difference between the two configurations
in the rotated frame is:



AE'(Q) = E/(Q) — EY(Q) = By — Ey — NhQ (18)

It is clear that E; > Fy because of the added kinetic energy of the circulating
flow. The existence of a vortex is not energetically preferable in the rotating
frame up to acritical angular velocity where AE'(Q.) = 0:

B -E

Q= 0
N, (19)

expressed solely in terms of energy of a condensate with and without the vortex
evaluated in the laboratory frame.

For a noninteracting trapped gas, the difference is £y —F¢ = Nhw, . This can
be justfied by the fact that at Q. = w the centrifigural potential —3MQ%r?
in the rotating frame is completely canceled by the radial trapping potential
1Mw?r? . In a weakly interacting limit it can be shown that Q./w, decreases
as the number of particle increases.

In the TF limit it can be shown that the critical velocity is given by:

Q0 _5d (067R,
wi, 2R ¢ :
This ratio is small in the TF limit, because d2 /R?2 ~ ¢/R; < 1. For an

axisymmetric condensate with axial asymmetry A = w,/w,, the TF relation
d? /R? = (d1/15Na))?/® shows how this ratio scales with N and .

(20)

4 Experimental observation of single vortex

The first experimental detection of a vortex involved a nearly spherical 8’Rb TF
containing two different internal Rb spin states which were coupled with each
other using external microwave radiation [4]. The topology of a two component
system (the order parameter has two components) is rather different from this of
a single component condensate. In the latter case it is a sphere and in the former
a circle. This is because the apart from the magnitude |¥| that is fixed by the
temperature in a uniform system, a one-component order parameter has only
the phase that varies between 0 and 27 whereas In contrast, a two-component
system has two degrees of freedom in addition to the overall magnitude; one
phase per component. The qualitative difference between the two cases can be
understood as follows: the single degree of freedom of the one-component order
parameter is like a rubber band wrapped around a cylinder, while the corre-
sponding two degrees of freedom for the two-component order parameter is like
a rubber band around the equator of a sphere. The former has a given winding
number that can be removed only be cutting it (ensuring the quantization of
circulation), whereas the latter can be removed simply by pulling it to one of
the poles (so that there is no quantization).

The JILA group was able to spin up the condensate by coupling the two
components. They then turned off the coupling, leaving the system with a
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Figure 3: (a) Successive images of a condensate with a vortex. The recorded
profile of each trapped condensate is fit with a smooth TF distribution (b).
The vortex core is the dark region within the bright condensate image. (c) The
azimuthal angle of the core is determined for each image, and plotted vs. time
held in the trap. A linear fit to the data gives a precession frequency 1.3(1) Hz.

residual trapped quantized vortex consisting of one circulating component sur-
rounding a nonrotating core of the other component, whose size is determined
by the relative fraction of the two components. By selective tuning, they can
image either component nondestructively; Fig. 3 shows the precession of the
filled vortex core around the trap center. In addition, an interference procedure
allowed them to map the variation of the cosine of the phase around the vortex,
clearly showing the expected sinusoidal variation (Fig. 4).

Separately, the ENS group in Paris observed the formation of one and more
vortices in a single-component 8”Rb elongated cigar-shape TF condensate [5].
The atomic condensate is stirred using an additional non axis-symmetric po-
tential created by the dipole potential of a non resontan stirring laser beam.
The combined potential produces a cigar-shape harmonic trap with a slightly
anisotropic transverse profile. The transverse anisotropy rotates slowly at a rate
Q = 200 Hz. The presence of the vortex is then revealed by a the density dip
at the center of the spacial distribution of the condensate.



10 r "h'i" I

05 He ' "]
cos(S) "
00r " A

05t %

-1‘0 [ L L I ]
00 05 10 15 20

azimuthal angle 0/7

Figure 4: Cosine of the phase around the vortex, showing the sinusoidal variation
expected for the azimuthal angle.

Figure 5: Optical thickness of the expanded clouds in the transverse direction
showing the difference between the states (a) without and (b) with a vortex.
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Figure 6: Observation of vortex lattices. The examples shown contain ap-
proximately (A) 16, (B) 32, (C) 80, and (D) 130 vortices. The vortices have
"crystallized" in a triangular pattern. The diameter of the cloud in (D) was
1 mm after ballistic expansion, which represents a magnification of 20. Slight
asymmetries in the density distribution were due to absorption of the optical
pumping light.

5 Experimental observation of Vortex lattices

Vortex arrays have been observed in condensates that were subjected to steady
rotation [6]. The vortex array that was created was rotating as a whole and
simulates a rigid body rotation. In the following Figures the experimental results
of Abo-Shaeers group are presented. They observed the formation of highly
order triangular vortex lattices with remarkable stability. They contain over
100 vortices with lifetimes of about several seconds. The condensate was held
in a magnetic trap and rotated under the influence of the dipole force from a
laser beam. The vortex cores were probed using resonant absorption imaging
after the confining potential was switched off. The observed “Abrikosov” lattices
are characterized by the large number of vortices they can hold and also their
extreme regularity even in the boundaries of the condensate.

6 Conclusions

Several aspects of the vorticity in alkali BECs can be studied using the GP
equation. Open issues in the cotemporary theoretical and experimental work
include the kinematics of vortex nucleation and decay, different methods for
vortex creation and the study of vortices in BECs with attractive two body
interactions. etc.
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Figure 7: Formation and decay of a vortex lattice. The condensate was rotated
for 400 ms and then equilibrated in the stationary magnetic trap for various
hold times. (A) 25 ms, (B) 100 ms, (C) 200 ms, (D) 500 ms, (E) 1 s, (F) 5 s,
(G) 10 s, and Image (H) 40 s. The decreasing size of the cloud in (E) to (H)
reflects a decrease in atom number due to inelastic collisions. The field of view
is "1mm by 1.5mm.

Figure 8: Vortex lattices with defects. In (A), the lattice has a dislocation near
the center of the condensate. In (B), there is a defect reminiscent of a grain
boundary.
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