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Abstract

Quantum phase transition is studied in a Bose-Einstein condensate held in a three
dimensional optical lattice potential. The system shows a superfluid to Mott insulator
transition as the lattice potential is increased. But unlike the unconfined case, this
system shows a Mott insulator phase even at incommensurate densities. Experimen-
tal results along with Quantum Monte Carlo studies indicate a remarkable situation
where there are locally confined Mott domains in the condensate. This new feature is
an outcome of translational symmetry breaking in presence of harmonic confinement.
Nevertheless, the system exhibits most of the essential features of a superfluid-Mott
insulator transtion observed in unconfined lattice bosons.



1 Introduction

A classical system cannot change its configuration at absolute zero temperature. But ac-
cording to Heisenberg’s uncertainty principle, quantum fluctuations still prevail at zero tem-
perature and can be responsible for a loss of order and hence a different state of the system.
This kind of a critical phenomenon is common in strongly interacting quantum systems.
Fermionic examples of strongly correlated systems include high temperature superconduc-
tors, heavy fermion materials and a class of systems undergoing metal-insulator transitions.
The bosonic counterpart includes short correlation length superconductors, granular super-
conductors, Josephson arrays and the dynamics of flux lattices in type II superconductors.
The composite Cooper pair of electrons in granular superconductors have been described as
bosonic degrees of freedom. There have been efforts to explain the problem of unconventional
vortex state for high temperature superconductors through a model of interacting bosons.
Other examples of strongly correlated bosonic systems include Helium-4 absorbed in porous
media like Vycor or carbon black [7], 2D array of mesoscopic granules and studies of exciton
lifetimes in quantum well structures. Recently, quantum phase transition has been observed
in a gas of ultracold alkali atoms.[1] This experiment has opened up a new window to the
world of quantum phase transition and many body physics.

Atoms in a Bose Condensate when arranged on an optical lattice have a wavefunction that
spreads over the entire lattice in a wave-like manner, as described by quantum mechanics. In
this state the phase of the atomic wavefunctions are coherent to each other and the system is
in a superfluid state. As the tunneling of the atoms from one site to another is decreased, the
interaction between the atoms become more prominent. Since the atoms interact through
a hardcore repulsion, the interaction tends to freeze the atoms to their respective sites.
When the atoms do not have sufficient kinetic energy to bear the cost of tunneling to an
already occupied site, the system enters the Mott insulator state and the phase coherence is
completely lost.

2 Bose Hubbard Hamiltonian

The relevant physics of these problems is presumed to be contained in the Bose Hubbard
Hamiltonian which describes the competition between kinetic energy and potential energy

effects.
H=—J % ala;+ U ni(hs—1) = Y iy, (1)
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where the symbol < 7,5 > denotes a restricted summation over indices such that the sites ¢
and j are nearest neighbours. The operators d; and d;-r correspond to the annihilation and
creation of a boson at the site ¢ respectively. p; is the chemical potential and in the case of
an optical lattice it is the energy offset of the i site and is denoted by ¢; [1]. The strength
of the tunneling term is given by the hopping matrix element between two adjacent sites ¢
and j.
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where w(x — x;) is the single particle wannier function localized at the i lattice site. Viaice
is the lattice potential and the interaction matrix element

+ Vlattice(x))w(x - Xj)7 (2)

Amh?
U= [ wix)fatx, 3)

with a being the scattering length of an atom.

2.1 The Mean Field Approach

The mean-field approximation that is done here [3], aims at de-coupling the t;; term so that
the whole Hamiltonian is a sum over single site energies. The mean-field theory used here
corresponds to the approximation

(a;— < a; >)(a;~— < a; >) ~ 0 (4)

Using equation (4) the hopping term is decoupled as

ala; =< al > a;+ < a; > al— < al ><a; > (5)

We now identify < a; > and < a;-r > as the superfluid order parameter ¢);. Assuming the
system is homogeneous

<a;>=<al >=1h; =1 (6)

We note that for the normal state with fixed number of particles, < a > or < a} > vyields
zero. Now, since the superfluid phase is characterized by off-diagonal long range ordering,
the value of v is non-zero in this phase. Hence, 1) can be taken as the order for this transition
and the superfluid density as p, = [¢)|?. The resulting mean-field version of the Hamiltonian
(1) can thus be written as a sum over single-site terms which are

HME = Z (i — 1) — pig — (as + al)+ | ¥ 2, (7)

Hamiltonian in (7) now contains a summation over only one index.

In the strong coupling limit U — oo this Hamiltonian can be diagonalized by truncating
the basis to contain a maximum of n = 2 particles at each site. Then in this limit one
obtains the important result [3]:

Ps
B—1-p, 8
; (8)

where p; is the superfluid density and p is the overall density. This result is peculiar because
it says that for incommensurate densities the superfluid phase persists even when the onsite
repulsion between the atoms become very large.



The critical value of U for which the superfluid density 5, becomes zero, is denoted by
U,. The value of U, can be found analytically by a small ¢) expansion (it is expected that the
order parameter will be small near the transition) and it is found that U, = (3+2v/2) ~ 5.83
for p=1 [3]

The critical behavior is of two types: mean field for transitions induced by changing the
density and of the (d + 1) dimensional XY universality class when the interaction strength
is swept at fixed commensurate densities.

3 Experimental set up

The experimental set up [1]consists of a spin-polarized sample of ¥ Rb atoms in the (F =
2, mp = 2) state held in a magnetic trap with trapping frequencies of v,qgia and vz equal
to 240Hz. Here F' represents the total angular momentum and mp the magnetic quantum
number of the state. The resulting condensate is spherically symmetric with a Thomas-
Fermi diameter of 264m. The three-dimensional optical lattice is realized by aligning three
counter-propagating beams orthogonal to each other. The beams are derived from a laser
diode operating at A = 852nm with a relative frequency difference of 30 MHz between them
to avoid interference. The optical potential resulting from the standing waves has the cubic
geometry of the lattice:

V(z,y, z) = Vy[sin® (kz) + sin®(ky) + sin®(kz)] 9)

Here k is the wavevector of the laser light and V[ the maximum potential depth of a single
standing wave laser field. The depth of the potential is measured in units of the recoil energy
E, = h2k2/2m. After the atoms are trapped, there are about 150,000 lattice sites with an
average of 2.5 atoms at each site in the center. Since the radiation force experienced by the
atoms is proportional to the intensity of the laser field, so increasing the intensity raises the
depth of the lattice potential.

3.1 Testing Phase Coherence

To test for any existing phase coherence, the combined trap potential is suddenly turned
off and the atom cloud is allowed to expand. If the atoms are in the superfluid phase, then
there will be perfect phase coherence in the atomic wavefunctions and one would obtain a
high-contrast three dimensional interference pattern. On the otherhand, when the system
is in the insulator phase, the number fluctuation at each site is exactly zero and hence the
phases of the atomic wavefunctions are completely arbitrary. In such a case, when the atom
cloud is allowed to expand, no interference is observed. As the lattice potential depth is
increased, the strength of higher order maxima in the interference pattern increases. This is
ascribed to a higher amount of scattering which results in the formation of quasiparticles of
higher wavenumber in the condensate. These higher wavenumbers contribute to the higher
orders in the interference pattern. But after this, increasing the lattice potential depth lowers
the amount of tunneling which causes the atoms to stick to their lattice sites. This would
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Figure 1: Schematic 3-dimensional interference pattern with measured absorption images obtain
after ballistic expansion from a lattice with potential depth of Vj = 10E, and a time of flight of
15ms.

deplete the condensate and would cause a fluctuation in the phase of the wavefunction. So
one would normally expect a broadening of the interference peaks as the potential depth is
increased. But what one observes is at a potential depth of 13F),. the interference maxima no
longer increase in strength but an incoherent background of atoms starts to gain strength,
until at a potential depth of 22F, the interference pattern is totally lost to the background
noise.

This remarkable behaviour is a signature of coexisting domains of superfluid and Mott
insulator phases in the system. It is important to note here that the average density at the
center of the trap is about 2.5. But according to the previous mean field calculation of the
unconfined boson Hubbard model, one obtains a Mott insulator phase only for commensu-
rate densities. This apparent paradox can be solved by noting that the external harmonic
potential applied to trap the atoms actually breaks the translational invariance of the lattice.
The density is no longer constant, it is maximum at the center of the trap. This inhomogen-
ity is the cause of formation of such peculiar Mott insulator domains in the system as we
shall see later.

3.2 Restoring Phase Coherence

A distinct property of the Mott insulator phase is that phase coherence is restored when
the optical potential is lowered back to a value where the ground state of the system is
completely superfluid. This property is shown in Fig.3. It is also interesting to contrast the
behaviour of a phase incoherent state with that of the Mott insulator state undergoing same
experimental sequence. The phase incoherent state shows no signs of superfluid state when
the lattice potential is lowered adiabatically, in contrast to the Mott insulator state. When



Figure 2: Absorption images of multiple matter wave interference pattern. These were obtained
for different Vj and after a time of flight of 15ms. Values of Vy were a. 0, b. 3E,, c. 7E,, d.
10E,, e. 13E,, . 14F,, g. 16E,, h. 20F,

the lattice potential is turned off, the phase incoherent state homogeneously populates the
first Brillouin zone of the optical lattice. This means that the state is in the vibrational
ground state of the system. But the relative phase difference between the adjacent sites
is still random. We infer that the Mott insulator is not just a state with random phases
between adjacent sites, but correlations play an important role in governing the physics of
the system.

3.3 Probing the Excitation Spectrum

The Mott insulator state is characterized by a gap in the excitation spectrum. In the limit
J < U, the energy gap A = U, the on-site interaction energy. One can imagine a situation
where there is one boson at each site. Now the energy cost for hopping one boson to an
already occupied site is U. It can be shown that this also holds for n bosons at one site. So
in a second order virtual process, it takes an energy U to create such a particle-hole pair.
This is the origin of the gap in excitation spectrum of Mott insulators.

In the experiment, the Mott insulator excitation spectrum is probed by tilting the lattice
potential with the application of a potential gradient. This would impart kinetic energies
to atoms at a higher potential and they start tunneling. But these atoms have to overcome
an excitation gap A before they can start tunneling. So probing the excitation spectrum
one would expect a resonance in tunneling probablity versus the energy difference between
the neighbouring sites. The technique used is analogous to the one used in NMR and is
outlined in the figure caption. For a completely superfluid system at 10FE,, the system is
easily perturbed for small potential gradients and finally the wavefunctions get completely
dephased and the peak width saturates. At about 13FE, two resonance peaks start appearing
and finally at a potential depth of 20F, we see two narrow resonance peaks on top of a flat
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Figure 3: a. Experimental sequence: 1} is increased to a value of 22F, in a time of
80ms. Then the atoms are held for a time of 20ms after which the potential is lowered
to a value of 9F, when the atoms are in the superfluid state again. The potential is
then turned off and the atom cloud is let to expand. b. Width of the interference
peak versus ramp time. Filled circles correspond to the Mott insulator and show
restoration of coherence. Open circles correspond to a phase coherent state which
shows no phase restoration. c-e Absorption images of the interference patterns from
the Mott insulator phase for ramp-down times: (c¢) 0.1ms, (d) 4ms, (e) 14ms
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Figure 4: a. Exptl. sequence: The optical lattice potential is increased in 80ms to a
potential depth of V. Then the atoms are held for a time of 20ms (7,er4yr) during
which a potential gradient is applied. The optical potential is lowered again within
3ms to V) = 9E,. Now the system is in superfluid state. Again, a potential gradient
is applied for 300us to change the phases of adjacent atoms by n. Finally the trap
potential is suddenly lowered to zero. b. Excitations created by the applied potential
gradient. c-f Width of the interference peak versus energy difference AE between
adjacent sites for different values of V., and 7periurp. € Vinaz = 10E} Tperpury = 2ms d.
Vinar = BE:Tpertury = 6ms €. Vipae = 16E, Tperpury = 10ms £f. Viyae = 20E, ,Tperpury = 20ms

The 7yerurp is increased to take into account the higher tunneling times for higher value
of Viaz



excitation probability. These are excitations in the Mott insulator phase and the location
of the first peak on the energy axis gives a measure of the exciation gap A or the minimum
energy difference between adjacent sites for which the system can be perturbed.

It is observed that the system goes through a transition between V, = 10E, and V{ =
13E,.. U is taken to be 13E, and this value is used in a band structure calculation to
numerically compute the critical value of U/J. It is found that U/.J = 36 which is close to
the mean field prediction of U/J = 5.83 X z, where the number of nearest neighbours z here
is six.

4 Breaking the Translational Symmetry

Theoretical curiosity in this problem arises from noting that the harmonic trapping potential
breaks the translational symmetery of the lattice. Whether the physics is fundamentally
different in this as compared to the unconfined case is a matter of inspection. Recent
quantum Monte Carlo studies of the Bose Hubbard Hamiltonian modified by the harmonic
potential indicate that the breaking of translational invariance has non-trivial effect on the
phase diagram. The Bose Hubbard Hamiltonian is modified to[2]:

H=-t) (afa;) + U ni(n;—1)+ VCZ(Z — L/2)*n; (10)

<,j> 2

where V. is the curvature of the trapping potential and L is the number of sites. The local
density is defined as n; = (alT a;) and the local compressibility as x; = On;/Ou;. A world-line
quantum Monte Carlo algorithm is used in canonical ensemble to study the Hamiltonian
(10)

4.1 Quantum Monte Carlo results

Fig. 5 shows the evolution of the local density with increasing total occupancy of the lattice.
Fig. 6 shows the compressibility profile k; associated with the local density n; [2]. It can
be clearly seen that the local density becomes almost zero in selected regions as the number
of atoms is increased. The consequence of these profiles is that the global compressibility is
never zero as opposed to the unconfined case. The number of bosons versus the chemical
potential graph is devoid of the plateaus which are characteristic of the Mott insulator phase
for unconfined bosons. The state diagram for this model is complicated and will not be
discussed here. The basic features are: There are Mott regions even at incommensurate
fillings. But these regions are localized and they grow and shrink with the ratio of ¢/U. The
state diagram as is worked in this analysis, has Mott insulator regions that are in co-existence
with superfluid state and hence the formation of these regions is not a true quantum critical
phenomenon as it is in the unconfined case.



Figure 5: The evolution of the local density m; as a function of increasing number of bosons.
Ve, =0.008, L = 100 and U = 4 At low fillings the system is in the superfluid phase. Mott insulator
behavior appears as the density is increased. But then at larger fillings a superfluid begins to form

at the center of the trap.
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Figure 6: Cuts show compressibility profiles (solid lines) associated with local density profiles. a

N=25b. N=33,¢c. N=50d. N =60
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Figure 7: Number of bosons as a function of chemical potential. The global compressiblity does
not go to zero. The inset shows the behaviour for confined case and we note the familiar plateaus

5 Conclusion

We have studied the quantum phase transition in lattice bosons. The experiment outlined
here successfuly describes the physics of strongly interacting bosons on a lattice. Like the
unconfined case, the bosons inside an optical trap undergo a superfluid to Mott insulator
transtion when tunneling between the neighboring lattice sites is decreased. The Mott insu-
lator state is an emergent state of matter and excitations in this state are entirely dictated
by interactions. However, due to the presence of the harmonic trapping potential, the den-
sity of atoms inside the trap is not constant. This inhomogeneity leads to localized Mott
insulator domains coexisting with the superfluid state. An immediate outcome of this is we
have a superfluid - Mott insulator transition even at incommensurate densities unlike the
unconfined case. The global compressibility also shows non-vanishing values even though
the Mott insulator state is present.

Future work might focus on studying the dynamics of the superfluid - Mott insulator
transition. Also besides changing the tunneling matrix element, it should be possible to study
the transtion by changing the atom-atom interaction using Feshbach resonances. Lastly, the
effect of disorder in the unconfined case is to introduce an intermediate Bose glass phase
where the compressiblity is non-zero but finite. One can introduce a quasi-crystalline order
in the optical lattice and look for the existence of the Bose glass phase in confined systems.

The Mott insulator state can be a good candidate for the realization of a Heisenberg-
limited atom interferometer [8], which should be capable of improved level of precision. The
Mott insulator phase also opens a new experimental realization of recently proposed quantum
gates with neutral atoms [9]
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