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Abstract

In this essay, the phase diagram of cuprates superconductors is reviewed. The
doping and magnetic field induced transitions are studied for finite temperature as
well as for zero temperature and the two dimensional quantum superconductor to
insulator and the three dimensional quantum superconducting to metal transitions are
observed. Scaling predictions are performed and compared with experimental results.



1 Introduction

More than a decade and a half after the discovery of high-temperature superconductivity
in ceramic compounds containing copper-oxyde planes, these material continue to puzzle
condensed matter physicists. More than finding a reasonable argument that predicts the
uniquely high values for the superconducting transition temperature in the cuprates, a theory
of high temperature superconductivity would have to explain the unique and complex phase
diagram exhibited by this class of materials. Depending on the temperature, the magnetic
field and the level of doping, the cuprates can be insulators, metals or superconductors.

Before the mid-1980s, superconductivity had only been observed in metals and metallic
alloys that had been cooled below 23 K. In 1986, high temperature superconductivity (high
T.) was discovered in barium doped lanthanum copper oxide with a transition teperature of
36 K. Similar materials with higher transition soon followed and more than 50 of them are
now known. Amazingly, they are all variations of a single theme: lightly doped copper-oxide
planes. Extensive research to find high temperature superconductivity in other families
of materials has been singularly unsuccessful. The question is, what is so unique about
the cuprates that enable them to challenge our fundamental understanding of electrons in
a solid? Establishing and understanding their phase diagram would be a significant step
towards the answer.

After sixteen years of reasearch on those material, there is enough experimental data
available to build an empirical phase diagram. The key factors in creating and destroying the
superconducting state have been identified to be the temperature and the magnetic field, as in
the traditional superconductors but also the doping and substitution. In cuprates materials,
superconductivity is derived from the insulating and antiferromagnetic parent compounds
by by partial substitution of ions or by adding or removing oxygen. One property believed
to be generic to cuprates superconductors is a phase transition line in the temperature-
dopant concentration plane. The undoped compounds are not superconducting. As the
dopant concentration z is increased, the compound passes the ”underdoped limit” (z,), i.e.
minimum concentration with a superconducting phase transition at finite temperature. At
that point adding dopant increases the transition temperature 7, until an optimal doping
T, is reached. With further increase of z, T, deacreses and finally vanishes in the overdoped
limit (z,). When the dopant concentration is lowered from the optimal value along the
axis x, the compound undergoes at zero temperature a quantum phase transition at the
underdoped limit. The resistivity takes an infinite value. It is a quantum superconductor
to insulator (QSI) transition. On the other hand, if it is increased towards the overdoped
limit, a quantum superconductor to normal metalic state (QSN) occurs. The doping has also
been observed to change the anisotropy. In tetragonal cuprates, the anisotropy is defined
to be the ratio v = £ /&. of the correlation lengths parallel £,, and perpendicular &, to the
CuOy layers ( ab plane). In the superconducting state, it can also be expressed as the ratio
v = Ae/Aap Of penetration depth of the supercurrents perpendicular and parallel to the ab
planes. When approaching a nonsuperconducting to superconductiong transition £ diverges
while in the superconductor to nonsuperconductor A\ diverges. In both cases however, ~
remains finite. There are two particular cases: v = 1 means that the 2 correlations are



equal: it is the isotropic 3D case, and v = oo when the perpendicular correlation vanishes: a
2D critical behavior. Experimentally, v is obtained from resistivity (v = &uw/& = 1/ Pab/ pC)
and magnetic torque measurements for the normal state and from penetration depth and
magnetic torque measurements in the superconducting state.

This paper aims to analyze the empirical phase diagram of cuprates superconductors and
take a close look at various situation where the 2D-QSI to superconductor to 3D-QSN tran-
sition occur. Given the generic phase diagrams, the scaling theory of finite temperature and
quantum critical phenomena leads to predictions, including the universal properties, which
can be confronted with experiment. As it stands, the available data seem to be consistent
with a single complex scalar order parameter, a doping tunned dimensional crossover and a
doping, substitution, or magnetic field driven suppression of superconductivity due to the
loss of phase coherence.

2 Phase diagrams

There are very few compounds for which the dopant concentration can be varied continuously
throughout the entire doping range. One of them is Las_,Sr,CuQ,, obtained by doping
La;CuQO4 with Sr, an alkaline-earth ion. Its empirical phase diagram in the temperature-
dopant concentration plane is showed on fig.1.
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Figure 1: Variation of T, (open circles) and 1/~ with z for Las_,Sr,CuQO,. Filled circles
correspond to 1/v7, and filled triangles to 1/y7—¢. The solid curve is Eq. (1) with T/ = 39K.
The dashed and dotted lines follow from Eq.(2) with 40,7, = 2 and 77, = 1.63. From [1]

The underdoped limit is z, = 0.047, the optimal doping is z = 0.16 and the overdopped
limit is x = 0.273. This phase transition line obeys the empirical relation:

Ty(z) = To(m) (1 _9 (i _ 1)2> = 2elEm) o — 1), (1)

T x2,

The doping dependance of 1/v7 evaluated at T,.(yr,) and T = 0 (yr=¢)is also shown. As
the dopant concentration is reduced,yr, and ;- increase systematically, and tend to diverge
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in the underdoped limit. Thus, increasing the anisotropy seem to shrink the range where
superconductivity occurs in the underdoped regime. This competition between anisotropy
and superconductivity raises serious doubts whether 2D mechanisms and models correspond-
ing to the limit 1" = oo can explain the essential observations of superconductivity in the
cuprates. A fitting of the graph shows that yp(,) is well described by

Y10
T = 2
V() = 220 )

which gives in terms of T:

rie =1 (M) ?)

For egs (1), (2) to be of interest, it is necessary to verify their validity on other materials
to ensure that we are not looking at a feature particular to Las_,S7r,CuQy. In practice
however, there is a lack of experimental results due to the difficulty of varying the doping
continuously. An alternative way of performing a check is to use the fact that the substitution
of magnetic and non-magnetic impurities depress 7, of the cuprates superconductors very
effectively. If Eq.(3)is satisfied for a wide range of compounds, the two other equations can
be considered valid. The comparison is done on fig. 2.
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Figure 2: T/T.(x.,) versus yp(x.m,)/yr for 8 different cuprates. The solid and dashed curves
are marking the flow from the maximum 7T to QSI and QSN criticality, respectively. [1]

There is a fairly good agreement between the experimental results and the parabola
representing eq. (3).

Another aspect that have been investigated experimentally is the substitution of some
of the Cu content of the compound by magnetic or nonmagnetic metals. Empirical re-
sults show that T, is suppressed in he same manner in both cases. The phase diagram of
Lay_;ST:Cuy—yZn, Oy is given to illustrate what happens.

Apparently, the substituent axis (y) extends the complexity and richness of the phase
diagram considerably. The overall critical temperature is reduced. An additional line of
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Figure 3: Phase diagram of Lay_;S7;Cuy_yZn,0,. The blue solid curve correspods to y.(z),
a line of quantum phase transitions. The pink arrow marks the dopng tuned insulator to
metal crossover and the green arrow marks a path where a QSI and QSN transition occurs.

3]

quantum phase transition is given by y.(z). At the underdoped limit, substitution has no
effect. As x increases, larger values of y are allowed before the transition. y reaches a max-
imum, start decreasing and eventually vanish at x,. More experimental results show that
isotope substitution(fig.4) does the same thing less effectively. This suggest that substitu-
tion, rather than magnetism, is the important factor. For y > y.(x) superconductivity is

suppressed due to the destruction of phase coherence.
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Figure 4: T,(%0) and T.(*¥0) versus z for Lay ;ST,CuQ4.[1]

One last aspect of the study

 content X

of the phase diagram is adding the magnetic field to the

picture. The phase diagram is sketched on fig. 5.

Close to the t—z plane, thermal fluctuations are believed to be responsible for a first order
vortex melting transition in a clean cuprates. Adding disorder to the system will destroy
the long range of the vortex lattice and the vortex solid becomes a glass. Since a sufficiently
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Figure 5: Schematic (z, H,T)-phase diagram. There is the superconducting phase
(S)bounded by the zero field transition line, T.(z, H = 0), the critical lines of the vor-
tex melting or vortex glass to vortex fluid transitions, T,,(z = fized, H) and the line of
quantum critial points, H,,(x,T = 0). Along this line superconductivity is supressed and
the critical endpoints coincide with the 2D-QSI and 3D-QSN critical points at z, and =z,
respectively. [1]

large magnetic field destroys superconductivity, there is a line in the x — H plane (H,,(z))
connecting zero field QST and QSN transitions. Recent experiments have shown that besides
destroying superconductivity, strong magnetic fields mediate a metal to insulator crossover.

A number of conclusions come from the above empirical phase diagrams:

1. The superconducting phase seem to occur in a regime that would correspond at higher
temperatures to an insulator to metal crossover. At low enough temerature, the transition
becomes insulator to superconductor to metal as doping is increased.

2. Substituting magnetic and nonmagnetic impurities seem to have the same effect on
the superconducting state.

3. The H(z)r—o graph roughly look like the T'(z)g—o graph. Here, the transition goes as
vortex lattice in the superconducting state to thermal fluctuation induced vortex metling in
the absence of disorder and to vortex glass in the presence of disorder. If the field is above
the critical value, an insulator to metal transition is observed once again.

3 Universal properties.

The theoretical method used to predict empirical results is the scaling theory for critical
phenomena and the related concept of universality. Hohenberg et al. summarized the concept
behind the theory in a very succint way in the introduction of their 1975 paper[2]:

“The phenomenological theory of scaling has been extrmely useful for understanding
critical phenomena in model systems and real materials. A related concept, formulated as
the hypothesis of universality greatly reduces the variety of different types of critical behavior
by dividing all systems into a small number of equivalence classes. Within each class, the



exponent and the equation of state will be the same, provided one fixes the scale of the order
parameter and its conjugate field apropriately. Thus, apart form two scale factors which will
differ from system to system, the thermodynamic functions of all elements in the same class
will be the same, sufficiently close to the critical point. The scaling hypothesis extended
to time independent correlations of the order parameter in the earliest formulations, and
it was found that the correlation exponents are simply related to the thermodynamic ones.
(...) This hypothesis [two-scale factor universality for correlation functions| states that the
correlation function for a system is fully determined near the critical point once the two
independent thermodynamic scales have been chosen. This means that the length scale is
not independent, but is universally related to the thermodynamic scales. ”

In other words, scaling consist in a few steps:

1. Find the dimensions of the dependent and independent variables. The usual choice
for a length scale is the correlation length;

2. Find a combination of the independent variable and the correlation length that does
not change under scale transformation; That quantity is universal for a certain group of
systems and does not depend on the variables of the system.

Before applying this theory on the finite temperature and quantum critical behavior, a
number of difficulties specific to the problem have to be taken care of. The universality class to
which the cuprates belongs is characterized by its critical exponents and various critical-point
amplitude combinations that are functions of the transition temperature, critical amplitude
of the specific heat, correlation lenght and penetration depth.

3.1 Scaling predictions for finite temperature critical behavior

The superconducting state order parameter is a complex scalar that can be represented
by a two component vector (XY). Sufficiently close to the phase transition line, 3D-XY
fluctuations dominate. The scaling form of the singular part of the bulk energy density has
the form[1, 2]:

fo = —kpTQE(ELES) Y (4)

where & is the correlation length in the ¢ direction and + = sign(t), t = T-2e and Qi are
universal constants. In superconductors, the pairs carry a non zero charge in addition to their
mass and the gradient term of the Ginzburg-Landau Hamiltonian couples that charge to the
electromagnetic field. However, it seems that inhomogeneities in cuprates superconductors
prevent these fluctuations from driving the system close to a charged critical point. The
vector potential fluctuations can therefore be neglected and the critical properties at finite
temperature are those of the 3D-XY-model, similar to the lambda transition in superfluid
helium, extended to take the anisotropy into account.

At long wavelength in the superconducting phase, the transverse fluctuations of the order
parameter dominates and the correlation does not decay exponentially. The usual definition
of £ cannot be used but a phase coherence length can be defined in terms of the helicity
modulus, which is a measure of the response of the system to a phase-twisting field. In the
presence of a phase twist, a universal relation can then be derived in terms of the phase



coherence length, also called transverse correlation length:

F Lo

kpT. = =
B 1673 22, /T

(5)

where ®; = hc/2e and v is the anisotropy. Even though some terms in this expression
depend on the dopant concentration, universality implies that this relation holds at any finite
temperature, irrespective of the doping level and the material, except at the critical endpoints
of the 3D-XY critical line. In the presence of a magnetic field, the scaling form is defined as
a function of a universal scaling function. When the non-universal critical amplitudes of the
correlation length and the scaling functions are known, universal properties such as specific
heat, magnetic torque, diamagnetic susceptibility, melting line,... can be derived from the
singular part of the free energy close to the zero field transition.

Does the theory match with experimental results? One thing to bear in mind when
comparing the theory with experiment is that in practice, cuprates are only homogeneous
over a finite length L only. The correlation length £(¢) proportional to ¢~ cannot grow
beyond L as t — 0, and the transition appears rounded. Fig 6. shows experimental results
of specific heat in YBCO. C/T is plotted versus logi|t|. The straight lines correspond to the

Figure 6: Specific heat coefficient C/T(mJ/(gK?)) versus logyo|t| for Y BayCuzO; for
T,=92.12. [4]

scaling predictions for homogeneous system, the circles are experimental results (data from
sample YBCO3 in [4], graph from [1]). The full circles are the points in agreement with the
theory and the open circles correspond to finite-size affected region. The upper branch is for
T < T, and the lower one for 7" < T,. Further from T, the temperature dependance of the
background becomes significant.

The high anisotropy of most cuprate also contribute in making the 3D-XY behavior
difficult to observe. Even though the strength of the the thermal fluctuations increase with
increasing vy, they become essentially 2D away from 7.



3.2 Quantum critical phenomena.

At zero temperature, the thermodynamics and the dynamics of the systems are inextrica-
bly mixed. In order to apply the scaling theory for quantum phase transitions, the path
integral formulation of quantum mechanics is used to change the statistical mechanics of a
D-dimensional system at 7" = 0 and with dynamical degrees of freedom into a D + z dimen-
sional classical system with a fake temperature which is some measure of the dynamics with
critical exponent z.

In the case of quantum critical phenomena (7 = 0), two kind of correlation length are
needed close to quantum criticality: spatial and temporal correlation length. Scaling theory
leads to a universal expression:

kT, = 25577, (6)
&0
where v, is the universal value of the scaling function argument at which the scaling function
exhibit a singularity at finite temperature and ¢ is a parameter introduced to measure the
relative distance from quantum critical points.
The zero temperature critical amplitudes are given by

Ae(0) = Qu(aPC(T,)) BHa, (M)
and (242)/4
4e’0y ‘
Qs = o, )\ab, (O) <—> ) (8)
0,0Aab,0 h )\QTC,O
where i
YT = Y100 ", 9)
and i
Aabo(0) = Aab,o(O)é’z"/Q. (10)

The universality classes emerging from the empirical relations are characterized by the
critical exponents:

2D—-QSI:2=1,v=1,3D—- QSN : z0 = 1. (11)

The 2D-QSI exponent agree with the theory of bosonic disordered system in 2D with
long range Coulomb interaction. The loss of superfluidity is due to the localisation of the
pairs which causes the transition. A possible explanation for the 3D-QSN transition is
the Ginzburg-Landau theory for a disordered d-wave superconductor to metal transition at
weak coupling and is characterized by the critical exponents z = 2 and 7 = 1/2, except in
an exponentially narrow region.

In order to confirm the occurence of the 2D-QSI transition, the scaling prediction are
compared to resistivity measurements near criticality. Eq. (6) together with the definition:

SONE
U(%C_(fab) B Y. ’ (12)
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yield pe/pay = 72, o< 6 27 o< T?*. The corresponding experimental data plotted on Fig. 7.
is in agreement with the prediction. Inedeed, the anisotropy increases by approaching the

Figure 7: p./pa» versus T of underdoped Y BayCusO,

2D-QSI transition.

4 Results and discussion

The phase diagram of cuprate superconductor have been established in the temperature-
dopant concentration-magnetic field space. There are temperature induced phase transition
at finite temperature and quantum phase transitions induced by fluctuations at 7" = 0. In
both cases, the material goes from insulator below the underdoped limit to superconductor
to normal metal beyond the overdoped limit. As the dopant concentration is decreased,
the anisotropy at 7, and at 7" = 0 increases and tend to diverge at the underdoped limit.
That seems contradictory with a possibility of 2D superconductivity as suggested by some
models. In the presence of a magnetic field larger than the critical value, a doping induced
metal-insulator transition is observed. This part of the paper was essentially a compilation
of experimental results used to draw an empirical phase diagram.

In the second part of the review, the authors derived a scaling theory and universal prop-
erties for finite temperature and quantum critical phenomena. The results were compared
to experiments.

Even if the experimental results seem to be consistent with the scaling predictions, it
usually take a lot more data for a critical exponent or a universal property to be recognized.

This theory in compatible with microscopic models relying on competing order param-
eters. Here, it is assumed that in the doping regime where superconductivity occurs, com-
peting fluctuations, including antiferromagnetic and charge fluctuations can be integrated
out.
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