PATTERN FORMATION IN CHEMICAL
REACTIONS

Davit Sivil

Abstract

In this term paper, I will make a survey of pattern formation in chemi-
cal reactions. I will use the chlorine dioxide-iodine-malonic acid(CIMA1)[1] and
chlorite-iodine-malonic acid(CIMA2)[10] reactions to explain two types of mech-
anism that lead to pattern formation. These are the Hopf bifurcation and the
Turing instability respectively. This topic is important and interesting because
it can shed light on the biological pattern formation problems.
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1 HISTORY

The study of pattern formation began in the early 1950s. Turing was the first
note that pattern formation may occur in some chemical reactions as early as
1952[2]. These are reactions where diffusion is stronger than convection. The
first experiment that validated Turing’s proposal was the CIMA2 reaction in
1990[8]. Also in the early 1950s, a Russian biochemist called Boris Belusov
observed oscillations in a mixed solution of citric acid and bromate ions in sul-
furic acid with cerium catalyst. The oscillations were observed as color changes
in the solution. This discovery was so radical at that time(1951)[4] that he
could only publish this result in 1959 as an abstract in a medical proceed-
ing[5]. Later, Zhabotinsky confirmed that this rection—It’s called BZ reaction
today—produces oscillations in densities of the chemicals with a period of a
couple minutes.

2 HOPF BIFURCATION

Bifurcation is defined to be a qualitative change in the system’s dynamics as a
control parameter is varied. The value of the control parameter at the bifur-
cation is called the bifurcation point. A physical example is the buckling of a
beam under a massive object. The weight of the object is the control parame-
ter. If the weight is small the beam will retain its azimuthal symmetry. As we
increase the weight, the beam will buckle at some critical weight.

To classify bifurcations, I will introduce a linearization method. Let’s take a
generic system of 2 dimensional nonlinear ordinary differential equations of the
form:

&= f(z,y), =gy (1)

where f(x,y) and g(x,y) are arbitrary real functions of x and y. To linearize
the system we will expand these functions around the fixed point(s) (z",y") of
the system defined as:

f@y") =0, g(z",y") =0. (2)

So at the fixed point(s) there is no change in the system. Expanding f(x,y)
and g(x,y) in Taylor series to first order gives the following matrix equation:

where we are measuring the x and y from the fixed point(s). The Jacobian
is given by
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and is evaluated at the fixed point(s). The behavior of the system around the
fixed point(s) is determined by the eigenvalues and the eigenvectors of the Jaco-
bian. An overall qualitative understanding can be achieved from this. Now, we
can classify the fixed points. Let’s define 7 as the trace and A as the determinate
of the Jacobian. The eigenvalues are given by

wy = % (T:I: T2 — 4/\) (5)

If A < 0, then the eigenvalues are real and have opposite signs. This means
that the trajectories move towards the fixed point along one eigenvector and
away from it along the other eigenvector. The linearized equations have solu-
tions of the form e“t. So positive w means exponential growth away from the
fixed point. Negative frequency gives approach to the fixed point.This kind of
fixed point is a saddle point.

If A > 0, then the eigenvalues are either real with the same sign(nodes), or
they are complex conjugate(spirals or centers). The nodes with negative eigen-
values(repeller) repel all trajectories that are around them so they are unstable.
The instability means that if the system is prepared in this state, it will move
away from it. The nodes(attractors) with positive eigenvalues are stable and the
system will be driven to it, if it sufficiently close to it. Spirals also have unstable
and stable species. If the R[w] > 0, it’s unstable -otherwise stable. Stable spirals
spiral down to the fixed point. If the eigenvalues are pure imaginary, then we
get a center which are periodic orbits. So the stability is determined by 7.

A limit cycle is an isolated periodic orbit. There are no closed orbits around
it. If the neighboring trajectories approach to it, then it’s stable. The limit cy-
cle may also repel all trajectories from it(unstable). There are two other cases
which are half-stable: trajectories approaching it from the inner part and mov-
ing away from it at the outside of it and vice versa. A stable limit cycle can be
used to model self-sustained(not driven) oscillatory systems.

Now, we are ready to discuss Hopf bifurcations. This happens when a stable
fixed point loses its stability as a parameter is varied. The stable fixed point
has eigenvalues with positive real parts, and it can be a spiral with complex
conjugate eigenvalues or an attractor. For our purposes, it’s enough to consider



Figure 1: Poincaré-Bendixson theorem. (after[3])

the spirals. At the bifurcation point, the real part(it’s the same for both eigen-
values) becomes 0. So, we have a center with a periodic orbit at this point. In
a Hopf bifurcation, a limit cycle is created as a stable fixed point turns into an
unstable one.

2.1 Poincaré-Bendixson Theorem

This is an existence theorem about limit cycles. The proof requires some knowl-
edge of topology[7] and I will omit it. It applies to 2-dimensional systems.

Poincaré-Bendixson Theorem. Let R be a closed and bounded region in
the plane which does not contain any fixed points. Now, we have an continuously
differentiable vector field of the form eq. (1). If there is a trajectory C that
stays inside R for all times, then C is a limit cycle(at least as t — 00). See figure
1.

This theorem is useful with a wise choice of region R which includes trajec-
tories that stay inside it.

3 TURING INSTABILITY

Turing instability occurs in diffusive chemical reactions. Intuitively, it requires
two key elements: an activator(x) whose concentration increases its own pro-
duction and an inhibitor(y) which slows down the first reaction. If y diffuses
more rapidly than x, then we might see Turing type pattern formation. These
patterns are time independent and characterized by an universal wavelength.
This wavelength does not depend on the geometry of the system, but it only



depends on the reaction parameters such as rates, concentrations and diffusion
coeflicients.
These systems can be modeled similar to Eq. 1[6]:

Ba:i .

ot

Here, z; stands for x or y, F; introduces the nonlinearity into the system,

D; are the relevant diffusion constants and A is the usual Laplacian. Other

than F;, this is the diffusion equation. We linearize the system by Taylor Series
expanding:

Fi(z,y) + D;Az;, i =1,2 (6)

;=
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where we have replaced A by —k? since we have taken a Fourier transform
with respect to (x,y). If the Jacobian takes one of the following forms, the
conditions listed in the beginning of the section are fulfilled:

w(IZ)e (1) ®

The eigenvalues of the system are given by:

(M)ij - D,-k%,-,-] zj, (7)
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where ¥ is the trace and § is the determinant of the matrix in Eq. 7.
The instability occurs when one of the eigenvalues have a positive real part
so the concentration goes like et®[“lt(to infinity). This will happen when the
determinant of the Jacobian is positive and D, is sufficiently large.

4 THE CIMA1 REACTION

In this section, we study a simple model of the CIMA1 reaction, which shows
oscillatory behavior. We will see that this is caused by a Hopf bifurcation. The
experiment was performed in a continuous flow stirred tank reactor(CSTR). The
densities were measured by a spectrometer. This complicated reaction can be
represented by the following important steps whose speed has been determined
by numerical calculations.

CIOy + I~ = {CIO2I7} (fast) (10)
{CIOxI"} - CIO; +1 (slow) (11)
I+1 - I (fast)  (12)



Numerical studies[10] have shown that the concentrations of CIO; (Y) and
I (X) change several order of magnitude while CIO;, I, and MA does not vary
much.

After non-dimensionalizing the rate equations become:
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where x and y are the non dimensional rates of I~ and CIO; respectively.
Here, a and b are non-dimensional rate constants which are known through
experiments. Fixed point is given by

F= iy =1ga” (15)
This point is unstable for
3a 25
b<b.=———. 16
e (16)

We know that the concentrations are bounded. Let’s assume that the fixed
point is unstable. So we can form a finite region R around this fixed point(but
excluding the fixed point) which will trap the trajectories that begin it. See
figure 2 So we know that this system has oscillatory solutions by the Poincaré-
Bendixson theorem.

We also note that at as b decreases below b,, the fixed point changes from
a stable spiral to unstable spiral. The numerical solutions show that we have
Hopf bifurcation. See figure 3

5 THE CIMA2 REACTION

To observe Turing instabilities, chemists designed the continuous flow un-stirred
reactor(CFUR). See Figure 4. In CFUR, the reactions only occur in a thin
layer of gel where the only relevant transport is via diffusion. The reaction is
continuously fed with chemicals which diffuse into the reactor. In CIMA2, there
is a difference in diffusion constants between I~ (activator) and CIO; (inhibitor)
because starch(a big molecule with low diffusion constant) couples to I~ and
slows it down. Starch is also used to observe the pattern formation because it
turns dark blue when there is a high I~ concentration. The reaction can be
written as follows:

MA+I, - IMA+I1 +H" (17)
1
CIOy + I~ — CIO; + 512 (18)
CIO; +4I7 +4H" — I~ + 2L, + 2H,0 (19)
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Figure 2: The shape of the region R. (after[3])
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Figure 3: The numerical solutions to CIMA1 model shows a Hopf bifurcation.
Here a=10, so b, = 3.5. (after[3])



Numerical analysis shows that only the concentrations of I~ and CI0,; vary
significantly. The rate equations are
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CL PP (20)
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Here the r; are rate constants, and D = Dy/D;. K is proportional to the
starch concentration. x and y are the dimensionless concentrations of I~ and
CIO, respectively.The system will have a Turing instability if the following is
true:

D 3ri —125 4ry — /10(r? + 25)

. (22)
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The universal wavelength is found to be 0.2 mm(8] by experiments. We can
also have Hopf bifurcation for:

1 3r2-125

"<TTYK "

(23)

We can see that for D ~ 1 and K=0, Turing stability is screened and Hopf
bifurcation occurs first as ry is decreased. However, the Hopf bifurcation moves
to lower values of 1, as K increases. Turing instability occurs first for

(1+K)D> 47y + 1/10(r? + 25) (24)

4ry — \/10(r2 + 25)

The starch concentration doesn’t effect the Turing instability, but drives the
Hopf bifurcation away from it so that we can see Turing structures.

6 CONCLUSION

I have considered two mechanisms for pattern formation in chemical systems,
and gave one experimental example for each them. It’s remarkable that such
complex systems can be described by 2-dimensional models. Actually, the
CIMA2 system can have both type of behavior. Of course, the Hopf mecha-
nism is stronger than the Turing instability because it produces time dependent
patterns that will screen time independent patterns. There are types as well
such as defect bifurcations, plastic bifurcations... One can see review articles
for these[11,12]
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Figure 4: A typical continuous flow un-stirred reactor(CFUR) (after[9])
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