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Abstract

The Fractional Quantum Hall effect is reviewed from the perspective
of Chern-Simons field theory. The interacting 2D electron gas in magnetic
field problem is exactly mapped to a bosonic problem in which the bosons
couple to a new gauge field in addition to the electromagnetic field. It
is shown that mean field analysis in the new formulation is sufficient to
explain all basic features of the fractional quantum Hall effect.

1 Introduction

The theory of Fractional Quantum Hall Effect (FQHE) provides us with a strik-
ing example of a strongly interacting system which can be well understood in
terms of the weak interactions of nontrivial effective objects . What is most
striking about FQHE is that due to their fractional charge the effective objects,
unlike atoms and molecules, cannot be thought of as a simple collection of more
elementary particles.

The FQHE is basically the problem of interacting electrons in 2D in the pres-
ence of a strong perpendicular magnetic field. The ground state wave function
is completely different from the non-interacting one and the problem cannot be
understood by means of perturbation theory starting from the non-interacting
case. The many body ground state wave function was guessed by Laughlin with
the help of the variational principle. Once this highly non-trivial step was made
the fractional Hall effect theory developed quickly and many different ways of
looking at the problem were invented. In this paper we will review a work done
by Zhang, Hansson and Kivelson [1][2] who mapped the interacting electron
problem to one of interacting bosons coupled to an additional gauge field. The
advantage of the new formulation is that near filling factors of the form 1/(2k+1)
the essential features of FQHE can be derived by a straightforward mean field
analysis. This formulation enables us to compute quantities in a systematically
improvable way using the machinery of perturbation theory.

Chern-Simons Landau-Ginzburg (CSLG) approach to the FQHE makes use
of the fact that in 2 dimensions an electron can be treated as a boson to which an
odd number of magnetic flux quanta are attached. For filling factors ν = 1/(2k+
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1) the ground state is just a homogeneous bosonic field. The topologically trivial
fluctuations around the uniform state are gaped as can be easily seen from the
classical equations of motions for a charged liquid. The lowest lying excitations
are topological vortices in the uniform state. These vortices carry fractional
charge e/(2k + 1). The resistive dissipation if present comes from the motion
of the vortices. Under conditions in which FQHE effect is observed the vortices
are pinned down by the effects of disorder just like in type II superconductors.
When the vortices are free to move they behave as quasi particles with fractional
charge and fractional statistics. These quasi particles can in turn condensate
creating a hierarchy of FQHE states. This hierarchy can explain FQHE at filling
fractions different from ν = 1/(2k + 1). If the average electron density does
not correspond exactly to a filling factor of ν = 1/(2k + 1) the extra charge is
accommodated by creating localized vortices in the otherwise uniform Bose field.
This is analogous to the way in which type II superconductors accommodate
extra magnetic field.

2 Experimental Observations

An effectively 2D electron system is created at the interface of a semiconductor
and an insulator or two semiconductors (one of them acting as an insulator).
The electrons are trapped in a quantum well in direction perpendicular to the
surface formed by the insulator(acting as a high barrier) and an applied electric
field perpendicular to the interface. The quantum well is narrow enough so that
the z dependence of the wave function is quantized and at low temperatures the
z-dependence of the wave function is fixed to the lowest level.

A current is applied to the 2D system, and the resulting Hall voltage in
the perpendicular direction is measured. It is observed that for certain samples
and certain applied perpendicular magnetic fields the transverse conductivity is
σxy = fe2/h with f a rational fraction and at the same time the longitudinal
conductivity σxx = 0 - both with a very high accuracy. This is a defining
characteristic of the Hall effect.

Let ρ denote the electron density and B the applied magnetic field in z-
direction. The plateaus are formed around filling factors ν ≡ ρhc/(eB) which
are rational fractions. The plateaus are most prominent at fractions of the type
1/(2k + 1), k = 0, 1, 2, ...

The other fundamental aspect of the fractional quantum Hall effect is the ex-
istence of fractionally charged quasi particles. The charge of the quasi particles
is just the electron charge times the fraction f for the corresponding plateau.
The charge of the quasi particles can be measure directly using a device called
quantum antidot electrometer[3]. The most notable result is that the fractional
charge is the same within a given plateau, ex. for filling factors close but not
equal to 1/3 the quasi particles still have charge e/3.
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3 Chern-Simons theory of FQHE

3.1 Mapping to Bosonic Problem

The microscopic Hamiltonian for a collection of electrons in external electro-
magnetic field (A0,A) is

H =
∑
i

1
2m

[
pi −

e

c
A(ri)

]2
+
∑
i

eA0(ri) +
∑
i<j

V (|ri − rj |) + gµB · S, (1)

where m is the band mass of the electrons in the crystal. V(r) is the Coloumb
potential or some more general two-body interaction. The FQHE is observed
for strong magnetic fields so that the electrons are almost fully polarized (in
GaAs the Zeeman splitting is about 1/70 of the cyclotron energy) and we will
ignore spin from now on.

The above Hamiltonian acts on the space of antisymmetric functions and
defines an eigenvalue problem

Hψ(r1, ..., rN ) = Eψ(r1, ..., rN ) (2)

By performing a unitary transformation we will map it to an equivalent eigen-
value problem for symmetric wave functions:

H ′φ(r1, ..., rN ) = Eφ(r1, ..., rN ) (3)

The unitary transformation we will use is

U = exp
(
− ı
∑
i<j

θ

π
αij
)
, (4)

where αij is the angle between ri − rj and, say, the x-axis. Since αij = αji + π
swapping ri and rj leads to a phase change exp(−ıθ/π) in U . Therefore for
the special choice θ = (2k + 1)π if ψ is antisymmetric then φ ≡ U−1ψ is
symmetric. In order to obtain the same eigenvalue problem but for φ we define
H ′ = U−1HU . Noticing that

U−1
(
pi −

e

c
A(ri)

)
U = pi −

e

c
A(ri)− h̄

θ

π

∑
j 6=i

∇αij (5)

we introduce the statistical gauge operator

a(ri) =
φ0θ

2π2

∑
j 6=i

∇αij (6)

and write down the new bosonic Hamiltonian as

H ′ =
1

2m

∑
i

[
pi −

e

c
A(ri)−

e

c
a(ri)

]2 +
∑
i<j

V (ri − rj). (7)
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The second quantized version of H ′ is

H ′ =
∫
d2rφ†

[ 1
2m
( h̄
i
∇− e

c
A(ri)−

e

c
a(ri)

)2 + eA0(x)
]

(8)

+
1
2

∫ ∫
d2rd2s(ρ(r)− ρ̄)V (r − s)(ρ(s)− ρ̄),

where φ(r)† and φ(r) are the standard bosonic field operators, and

aα(r) = −φ0

2π
θ

π
εαβ

∫
d2s

rβ − sβ

|r− s|
ρ(s) (9)

is the second quantized expression for a in terms of the bosonic field operators.
εαβ = ε0αβ where εµνρ is the standard Levy-Civita tensor. Throughout this
article α and β will run over the two space components, and the indices µ, ν, ρ
will run over space-time with 0 being the time component. We included in
the Hamiltonian a uniform positive background with the same mean density to
avoid divergence of energy density in the thermodynamic limit.

Since U is a unitary transformation the charge number density is simply

ρ(x) = φ†(x)φ(x). (10)

Correspondingly the number current following from the charge conservation
equation

∂tρ+∇ · j = 0 (11)

is
j =

h̄

2mı
(φ†∇φ−∇φ† φ− 2ı

e

ch̄
(A + a)ρ). (12)

We will later determine the expectation value of this quantity in the presence
of electric field and from there the conductivity.

Although we have demonstrated the equivalence of the two problems the
usefulness of the transformation is not apparent at this level. If anything, the
new Hamiltonian looks more complicated. However, as we will show below, for
an appropriate average electron density a can cancel exactly the A field and as
a result a uniform ground state for the bosons becomes possible. By considering
the Gaussian fluctuations around it the Laughlin wave function can be recovered
after we transform back the wave function.

3.2 Coherent state path integral formulation

The goal of this paper is to show that in the new formulation of the problem
mean field theory is a good approximation and derive some of the FQHE phe-
nomenology from it. In order to perform the mean field analysis we will first
obtain the path integral representation of the above Hamiltonian. This formu-
lation is not required for the mean field theory but it is the best staring point
if we want to study corrections to it. The recipe for constructing a coherent
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state path integral is to write down the second quantized Lagrangian density
L(φ, φ†) = ıh̄φ∗∂tφ−H(φ, φ∗) and then formally set

Z[A] =
∫

[dφ] exp
ı

h̄

∫
dtd2xL(φ(x), φ∗(x)), (13)

where the path integral is over all c-functions φ(x).
As we saw above the operator a is expressed in terms of the bosonic field

operators. Therefore we can immediately write down the path integral over the
bosonic field. However it is much more elegant to write the path integral in a
way which threats a as an independent field. To accomplish this we need to add
an extra term La to the action which recovers the equations of motion for a in
terms of the bosonic field. Notice that the complicated operator identity 9 can
be replaced by the following two operator equations:

εαβ∂αaβ(r) = φ0
θ

π
ρ(r) (14)

∂αaα(r) = 0 (15)

These two equations can be viewed as Maxwell equations for the field a and (9)
as the corresponding 2D Biot-Savart solution.

We will formally introduce a new time component a0 of the field a and make
the Lagrangian linear in it. The idea is that the integration over a0 will produce
a δ function of its coefficient. For each r we have∫

da0(r) exp
(
ı
(
εαβ∂αaβ(r)− φ0

θ

π
ρ(r)

)
a0(r)

)
= δ(εαβ∂αaβ(r)− φ0

θ

π
ρ(r))

(16)
This δ-function will enforce (14) when we perform the integration over the space
components a. Equation (15) will be enforced by restricting the path integral
only to paths aT which satisfy ∂αaTα = 0. Putting together everything we said
above we get

Z[A] =
∫

[dφ][daT ][da0] exp(
ı

h̄

∫
dtd2rL) with (17)

L(φ, a) = φ∗ıh̄∂tφ− ı
(
εαβ∂αaβ(r)− φ0

θ

π
ρ(r)

)
a0(r)−H ′(φ,a,A) (18)

It is also possible to remove the transverse gauge restriction in the path integral
by the Fadeev-Popov procedure. A term − eπ

2θφ0
εαβaα∂taβ needs to be added

to the Lagrangian. Then after regrouping we obtain the standard Chern-Simon
Lagrangian L = La + Lφ with

La =
eπ

2θφ0
εµνρaµ∂νaρ (19)

and
Lφ = φ∗

(
ıh̄∂t − e(A0 + a0)

)
φ−H ′(φ,a,A). (20)

This path integral is exact reformulation of the original problem.
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3.3 Mean Field Theory

The mean field theory consists in replacing the path integral with the contribu-
tion from its most important path - the classical path which makes the action
stationary. This path satisfies the classical Euler-Lagrange equations of motion.
The equation of motion obtained by variation with respect to a0 is simply (14)
with the operators replaced by ordinary fields.

Let us consider the case A0 = 0 (no external electric field) and εαβ∂αAβ =
−B (uniform magnetic field). From the classical field equations for ψ and a it
is easy to see that a uniform solution for φ is possible provided that B = φ0

θ
π ρ̄.

The solution is simply

φ(r) =
√
ρ̄, a(r) = −A(r), a0(r) = 0 . (21)

In this state we can think of φ as a charged Bose condensed which is not coupled
to an external potential.

If we apply electric field Eµ = −∂µA0 we can deduce the conductivity.
Looking at (12), (19) and (20) we see that

< jα(x) >= Z−1 δZ

δAα(x)
=

δSA
δAα(x)

, (22)

where SA is defined as Z[A] = exp(iSA).
In mean field theory we can replace SA by S, as computed using the classical

path, and equate fields with their expectation values. Using the static field
equation δS

δaα
= 0 we can write

jα =
δS

δAα
=
δSφ
δaα

= −δSa
δaα

. (23)

After an integration by parts the Chern-Simon Lagrangian can be written in
the form

La =
eπ

2θφ0
εαβ(2aα∂βa0 − aα∂taβ). (24)

Correspondingly
δSa
δaα

=
eπ

2θφ0
εαβ(2∂βa0 − ∂taβ), (25)

evaluating the expression for static a we obtain our final result

jα =
e2

h

π

θ
εαβEβ (26)

from which we can read off σxx = 0 and σxy = 1
2k+1

e2

h .

3.4 Vortices

Still in the realm of mean field theory we can look at the equations of motion
for the fields and see that in addition to the uniform ground state there exist

6



vortex solutions, i.e. solutions for which∮
`

∇θd` = ±2πn, (27)

for vortices of strength n. Here θ(r) is the phase of the complex field φ(r). Far
from a unit vortex located at the origin the solution for a takes the asymptotic
form

δa ≡ a(r) + A(r) = ±φ0

2π
1
r
êφ. (28)

Therefore for a large contour we have∮
δa · d` = ±φ0. (29)

Because of (14)

ρ = ρ̄+ δρ =
ν

φ0
εαβ∂αaβ =

ν

φ0
εαβ∂α(δaβ −Aβ) =

ν

φ0
εαβ∂αδaβ +

ν

φ0
B. (30)

Therefore
δρ =

ν

φ0
εαβ∂αδaβ , (31)

which upon integration gives the excess charge of the vortex

Q = e

∫
d2rδρ(r) = e

ν

φ0

∮
δa · d` = ±eν (32)

This demonstrates that at the fractional filling the vortex excitation have the
corresponding fractional charge.

If we separate the topologically nontrivial part φ̃(r) of φ(r) by writing

φ(r) =
√
ρ(r)eıθ(r)φ̃(r) (33)

one can construct an effective theory for φ̃(r) by integrating out the other degrees
of freedom. We can use this theory to study the vortex dynamics. The Chern-
Simons field theory formulation allows one to study in details the FQHE in a
standard field theoretical framework.
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