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Abstract
There are two basic types of proposals of superconductors used to implement quantum bits (qubits): flux

qubits and charge qubits. These two designs are based on Josephson junction but are operated at two extreme
regimes: phase dominated and charge dominated regimes respectively. In both limits, the system behaves
approximately as a two-level quantum-mechanical system, which serves as a basic requirement of quantum
bits. There is a recent hybrid design, which can operate at the intermediate regime under appropriate
control. In this paper, we focus on discussions of these designs of qubits and experiments demonstrating
coherent superpositions of two levels and coherent control of some systems, with the problems regarding
decoherence and measurement briefly mentioned in the concluding remarks.
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I. INTRODUCTION

Quantum computer[1, 2] that promises us to perform powerful tasks, such as fast factoring long-
digit numbers and efficiently searching an item out of a large unsorted database, can only be theorists’
dream if no physical system can reliably implement proposed quantum algorithms. The delicate
manipulation of quantum states is susceptible to the disturbance from the environment, so called
the decoherence. The quantum system must[3] have well-defined quantum states, usually two-level
(thereby termed quantum bits), in which arbitrary superposition is possible and long-lived. Also, in
order to perform operation, we must be able to prepare some initial states of all the quantum bits
(qubits), precisely control the state of each qubit and interactions with other qubits, and finally read
out the states of specific qubits at the end of “computation”. Also, from the technological point of
view, we need to put a large number of qubits together into manufacture.

Superconductors with Josephson junctions offer one of the most promising playgrounds for realiz-
ing quantum computation, since, the fabrication technology is very matured, and under appropriate
conditions, the superconducting system can behave as a well-defined two-level system, and some
coherent control over the two levels have already been demonstrated. The two levels are usually
macroscopically different, in that there are a macroscopical number of Cooper pairs collectively act-
ing coherently, e.g. circulating in one direction of a superconducting loop for one state and in the
opposite direction for the other. Being able to build a superposition of macroscopically different
states also offers an insight into the fundamental problems [4] of quantum mechanics itself, e.g. ,
the validity of quantum mechanics applying to everyday objects without any modification and the
measurement problem as distinct process to unitary evolution.

The study of superconducting systems to implement qubits is thus both fundamentally and quan-
tum computationally interesting. There are three different types of designs so far: charge qubit,
flux qubit, and “quantronium” (which operates in the intermediate regime of the former two). In
this Paper, we review each of the three designs and related experiments[15] in Sec. III, Sec. IV, and
Sec. V respectively. Finally, we make some concluding remarks in Sec. VI.

II. JOSEPHSON EFFECT

We start by discussing the Josephson effect[16], since Josephson junction is the most important
element in designing superconducting qubits. Suppose there are two superconducting electrodes
connected by a weak link, which can be an insulating layer, a normal metal layer, or a narrow con-
striction. The two superconducting electrodes can be described by a Landau-Ginzburg wavefunction
ψj = |ψj|eiφj . Josephson found that, at zero bias voltage, there is a supercurrent flowing between
the two electrodes, i.e., Is = Ic sin ∆φ, where ∆φ is the phase difference and Ic is the critical current,
i.e., the maximal supercurrent the junction can support. Furthermore, if a nonzero bias voltage V is
maintained across the junction, the supercurrent will be alternating with the phase difference given
by ∆φ = ∆φ0 + 2eV t/~. The free energy stored in the junction can be drived

F =

∫
V Isdt = const.− EJ cos ∆φ, (1)

where EJ ≡ ~Ic/2e is the Josephson coupling energy. In the presence of a vector potential A, we
can employ gauge transformation to derive the equation for supercurrent. Suppose ψ = |ψ|eiφ is the
solution to the Landau-Ginzburg (LG) equation in the absence of the vector potential A = 0, and
ψ′ = |ψ′|eiφ′ is the corresponding solution in the presence of A, the two solutions are connected by,

ψ′ = |ψ′|eiφ′ = ψ exp
(
i
2π

Φ0

∫
A · ds), (2)
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FIG. 1: Josephson charge qubits: (a) The simplest design. (b) Replace the junction in (a) by a loop with
two junctions. (c) The total charging energy as a function of ng.

as can be easily seen from the LG equation: αψ +β|ψ|2ψ +(1/2m∗)(~/i∇− 2eA/c)2ψ = 0, in which

(
~
i
∇− 2e

c
A)2

(
ψ exp(i

2π

Φ0

∫
A · ds)) = exp(i

2π

Φ0

∫
A · ds)(~

i
∇)2ψ, (3)

where Φ0 ≡ hc/2e is the flux quantum, and the line integral starts from some arbitray reference

point. Thus, we can define a gauge-invariant phase differnce: γ ≡ ∆φ′ − (2π/Φ0)
∫ 2

1
A · ds, where

the line integral starts from one superconducting electrode to the other, and the supercurrent in the
Josephson junction, in terms of the gauge-invariant phase difference, becomes Is = Ic sin γ. The free
energy of a Josephson junction in the presence of a gauge potential is, therefore,

F = const.− EJ cos γ. (4)

III. CHARGE QUBIT

Fig. 1a shows a simplest design of qubit, usually called Cooper pair box, in which a superconductor
island (with execess charge Q) is connected ,at one end, through a Josephson junction (with shunt
capacitance CJ), to a superconducting electrode biased at zero voltage, and, at the other end, to
a voltage source Vg through a capacitor Cg. There are several contributions to the Hamiltonian.
In addition to the tunneling energy discussed previously in Eq. (4), we have to take into account
energy stored in the two capacitors Cg and CJ . Suppose there is an excess of charge Q (relative to
neutral state) on the superconducting island, and the charges on the two capacitors are q1 and q2

respectively. The potential V of the island can be easily computed from the relations

q1 = Cg(Vg − V ), q2 = CJ(0− V ), q1 + q2 + Q = 0, (5)

and we have V = (CgVg + Q)/(Cg + CJ). The electrostatic energy is then

U =
∑

i

1

2
Ci(Vi − V )2 =

1

2CΣ

(Q2 + CJCgV
2
g ), (6)

where we define CΣ ≡ Cg + CJ to be the sum of the two capacitors. But this is not all. We also
have to subtract the energy supplied by the voltage source when the charge tunnels (through the
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FIG. 2: Coherent control of quantum states in a Cooper pair box.

junction) into the island. Suppose an electron tunnels in, this changes the potential V by e/CΣ,
resulting changes of charges on each capacitor by −eCg/CΣ and −eCJ/CΣ respectively. Hence the
work done by the voltage source (Vg) is −eCgVg/CΣ. After total charge Q tunnels in, the total work
done by the voltage source is W = −(QCgVg)/CΣ[17]. Therefore, the total energy E is

E = F + U −W =
1

2CΣ

(Q + CgVg)
2 − EJ cos ∆φ +

1

2
CgV

2
g (

CJ − Cg

CΣ

), (7)

where the last term independent of Q can be ignored. If the energy gap ∆ of the superconductor is
much larger than the charging energy Ec ≡ e2/2CΣ, single electron tunneling is suppressed, and thus
the excess charge (Q = 2ne) can only exist in the form of Cooper pairs. The resulting Hamiltonian
is then

H = 4EC(n− ng)
2 − EJ cos Θ, (8)

where ng = −CgVg/2e is the effective number of charge pair due to the gate voltage and Θ is the phase
of the superconductor island (taking that of superconducting electrode to be zero). Furthermore,
if the charging energy EC is much larger than the Josephson coupling energy EJ , the convenient
basis to describe the Hamiltonian is n instead of Θ. Using the relation e±iΘ|n〉 = |n± 1〉, as can be
understood in the correspondence (Θ, n) ↔ (x̂, p̂), where the latter set satisfies eikx̂|p〉 = |p + k〉, we
arrive at the expression for the Hamiltonian

H =
∑

n

{
4EC(n− ng)

2|n〉〈n| − 1

2
EJ

(|n〉〈n + 1|+ |n + 1〉〈n|)
}

. (9)

We plot in Fig. 1c the “potential” term as a function of ng, taking into account possible mixing.
We see when Vg is biased such that ng is close to, say, 1/2, the two nearby states |0〉 and |1〉 are
degenerate and can be mixed by the Josephson term. Near this degenerate point, the Hamiltonian
can be approximated as

H ≈ 4EC

(
n2

g|0〉〈0|+ (1− ng)
2|1〉〈1|)− 1

2
(|0〉〈1|+ |1〉〈0|) (10)

= 4EC

(
(ng − 1

2
) 0

0 −(ng − 1
2
)

)
+ 2EC(2n2

g − 2ng + 1)

(
1 0
0 1

)
+

1

2
EJ

(
0 1
1 0

)
, (11)

where the second term is a constant term (even if ng changes with time, the effect on any state is
still same) and can be ignored. In terms of Pauli matrices, H becomes

H = −1

2
Bzσz − 1

2
Bxσx, (12)
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FIG. 3: The charge echo experiment.

where Bz ≡ 4Ec(1− 2ng) and Bx ≡ EJ .
If we replace the junction by a low-self-conductance SQUID (Fig. 1 b) threaded by flux Φx, the

potential −EJ cos Θ changes to −ẼJ(Φx) cos Θ, where ẼJ(Φx) = 2EJ cos(πΦx/Φ0) (see Sec. IV) ,
and the resulting Bz and Bx are independently controllable by Vg and Φx respectively. Arbitrary
single-qubit operation (rotation) can be achieved by controlling Bz and Bx.

A. The NEC Experiments

In addition to the design shown in Fig. 1b, the experimental setup[5–7] in the NEC group has two
other voltage sources: Vp (with capacitor Cp) for applying a pulsed voltage to bring the system to
the degenerate point and Vb (with capacitor Cb) biased such that the one-pair-execess state |1〉 will
decay to state |0〉 by two sequential quasiparticle tunneling events through the probe junction; see
Fig. 2a.

The effective bias pair number neff (ng in previous section), is now determined by the three voltage
sources: neff = (CgVg +CbVb+CpVp(t))/2e = n0+CpVp(t)/2e, where we define n0 ≡ (CgVg +CbVb)/2e.
Fig. 2b shows the energy levels near 2neff = 1 and a schematic evolution of the state |0〉 initially far
from the degeneracy point. As the pulse voltage Vp is on for a short interval ∆t (see Fig. 2c), the
system is brought to the neighborhood of the degeneracy point, at which the state |0〉 can tunnel into
state |1〉 by mixing, and subsequently decay back into |0〉 by the sequential tunneling of electrons
through the probe junction. The current flows through the probe is proportional to, and thus a
measure of, the probability of the transition |0〉 → |1〉. Fig. 2c compares the results to the case when
no pulse is applied (there can still be sequential quasiparticle tunneling), and it shows the oscillation
of the transition probability as a function of n0 and has the highest peak at n0 = 0.5.

Furthermore, they also start the experiment with a fixed value of 2n0 = 0.51, apply a pulse voltage
such that 2np = CpVp/e = 0.49 for a duration ∆t, during which the system is at degeneracy point
2neff = 1, and measure the pulse-induced current after the pulse is off. In view of Eq. (12), when the
pulse is on, Bz = 4Ec(1− 2neff) = 0, the evolution becomes a “spin rotation” in x-direction

ei∆tBxσx/2 =

(
cos(∆tBx/2) i sin(∆tBx/2)
i sin(∆tBx/2) cos(∆tBx/2)

)
. (13)

The probability of 0 → 1 transition is P (1; ∆t) = sin2(∆tBx/2) if initially the state is in |0〉. They
observe such oscillation in the induced current (Fig. 2d), and determine the period Tcoh ≡ 2π/Bx =
2π/ẼJ experimentally. They repeat the same procedure for different values of ẼJ (controllable by
Φx) and agree with the results from microwave spectroscopy[6].
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FIG. 4: (a)-(d) Several variations of flux qubits. (e)(f) The potential U(Φ)/U0 versus Φ/Φ0. In (e),
Φext/Φ0 = 0.6 and the corresponding βL are 9,6,3 respectively as we go from top to bottom curves along
the central barrier. In (d), βL = 2.33, and Φext/Φ0 are 0.4, 0.5, and 0.55 respectively as we go from top to
bottom curves along the right well.

The same group recently demonstrates coherent control of single-qubit rotations in a “charge echo”
experiment [7], in that it is the charge rather than spin state that is rotated on the Bloch sphere, as
is easily seen from the equivalence of the system Hamiltonian to that of a spin-1/2. The schematic
rotations are shown in Fig. 3a, where we see that no matter what the position of the arrow (indicating
the “spin” direction) on the equator is time τd after the first π/2 x-rotation, after a π x-rotation
followed by the same duration τd, the arrow should end up at the same position. The corresponding
applied voltage pulse sequence is shown in Fig. 3b, and the final π/2 pulse is used to rotate the state
back to |0〉 and |1〉 for the purpose of measuring the transition current in the probe junction. This
refocusing technigue can be used to eliminate low frequency fluctuations (some arrows lie a little bit
ahead and some behind), so that the different arrows remain coherent with respect to each other. A
small delay in the second rotation (π) and third rotation (π/2) will result in oscillation of the induced
current, while longer delay will result in decay of the signal as well; see Figs. 3de. Fig. 3f shows the
decay time of the signal with this correctional procedure as compared to that without in Fig 3d, and
we see that the decay time is indeed enhanced. The important message from this experiment is that
the coherent control of single charge-qubit operations have been demonstrated.

IV. FLUX QUBIT

The simplest flux qubit is made up of a superconducting loop with a Josephson junction (Fig. 4a).
We first derive the Hamiltonian in terms of total flux threaded through the loop. Recall that the
supercurrent velocity is given by

vs =
1

m∗ (ps − 2eA

c
) =

1

m∗ (~∇φ′ − 2eA

c
), (14)

where φ′ is the phase of the LG wavefunction. The total flux enclosed by the loop is

Φ =

∫

loop

A · ds =

∫

sc

A · ds +

∫

jn

A · ds =

∫

sc

Φ0

2π
(∇φ′ − m∗vs

~
) · ds +

∫

jn

A · ds, (15)

where the subscripts in the integration ”sc” and ”jn” indicate the contours across the superconductor
and the junction respectively. If the superconductor is thicker than the penetration depth, vs is zero
inside the superconductor, and, noting the single-valuedness (modulo 2π) of the phase, we get

Φ = −Φ0

2π

( ∫

jn

∇φ′ds + 2nπ
)

+

∫

jn

A · ds = −Φ0

2π
(γ + 2nπ), (16)
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FIG. 5: The Stony Brook Experiment.

where we have used the definition of the gauge-invariant phase difference γ, which now becomes
γ = 2πΦ/Φ0 + 2nπ. If there are several junctions (see e.g. Fig. 4c) in a superconducting loop (this
kind of device is usually called superconducting quantum interferace device, SQUID, for short), the
above relation is easily generalized to

∑
i

γi = 2π
Φ

Φ0

+ 2nπ, (17)

where γi is the gauge-invariance phase difference across the i-th junction.
The Josephson tunneling term to the energy of the one-junction SQUID is then −EJ cos(2πΦ/Φ0).

Since the geometry is a loop, the system Hamiltonian also contains a term associated with self-
inductance L, i.e. LI2

s /2. The total flux contains, in addition to the externally applied flux Φext,
the term due to self-inductance, LIs, and it is therefore LI2

s /2 =
(
Φ − Φext)

2/(2L). Including the
charging energy Q2/(2CJ) as well, we arrive at the Hamiltonian of the superconducting loop with a
junction

H = −EJ cos
(
2π

Φ

Φ0

)
+

(Φ− Φext)
2

2L
+

Q2

2CJ

= U(Φ) +
Q2

2CJ

, (18)

where Q = −i~∂/∂Φ is the canonically conjugate variable to Φ just as momentum p̂ to position x̂,
and

U(Φ) ≡ U0

[1

2

(2π(Φ− Φext)

Φ0

)2 − βL cos
(
2π

Φ

Φ0

)]
, (19)

where U0 ≡ Φ2
0/4π

2L and βL ≡ EJ/U0.
In Figs. 4ef, we plot the potential for different values of Φext (near Φ0/2) and βL. As can be

seen from the figures, the barrier height between the two lowest minima depends strongly on βL and
weakly on Φext. As βL increases, the barrier height increases. We remark that in order to have a
double-well structure near Φ = Φ0/2, βL needs to be larger than unity. When temperature is low
enough, only the lowest state within each well is relevant. We denote the two localized states by |ψL〉
and |ψR〉 respectively. Then the Hamiltonian is approximately two-level, and when written in terms
of matrix, it is

H ≈
(〈ψL|H|ψL〉 〈ψL|H|ψR〉
〈ψR|H|ψL〉 〈ψR|H|ψR〉

)
=

(
εL ∆
∆ εR

)
≡ −1

2
Bzσz − 1

2
Bxσx, (20)

where we have dropped a constant term (εL+εR)/2 in the last equality. Bz = (〈ψR|H|ψR〉−〈ψL|H|ψL〉
characterizes the asymmetry of the double well, and it depends strongly on Φext (Bz = 0 when
Φext/Φ0 = 0.5, Bz > 0 when Φext/Φ0 < 0.5, and Bz < 0 when Φext/Φ0 > 0.5 and weakly on βL;
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Bx = 2〈ψL|H|ψR〉 (which is real since |ψL〉 and |ψR〉 are local ground states hence can be taken to
be real) describes tunneling between the two wells and depends on the barrier height, hence strongly
on βL and weakly on Φext (near Φ0/2).

In order to gain more control over Bz and Bx, we can relace the Josephson junction by a smaller
loop with two junctions with flux Φ̃x threaded through; see Figs. 4bd. If the self-conductance of the
loop is low, we simply replace −EJ cos

(
2πΦ/Φ0) by

−EJ cos
(
2πΦ/Φ0 + πΦ̃x/Φ0

)− EJ cos
(
2πΦ/Φ0 − πΦ̃x/Φ0

)
= −2EJ cos

(
πΦ̃x/Φ0

)
. (21)

The result is to replace EJ by an effective ẼJ = 2EJ cos
(
πΦ̃x/Φ0

)
. Thus, Bx and Bz can be controlled

by Φ̃x and Φext. We remark that, in contrast to the charge qubit case, here, the dependence of Bx

and Bz on Φ̃x and Φext is, in general, very complicated and needs to be calculated by, e.g., the WKB
approximation, which we do not address here.

A. The Stony Brook Experiment

The experiment of the group at Stony Brook did not demonstrate the control of a qubit, but
instead probed the superposition of two excited states (rather than the lowest two states) close to
but still below the top of the barrier of the double-well[8], for if the barrier is too high, the mixing
between the lowest two stateswill be exponentially suppressed. If the two excited states (denoted by
|0〉 and |1〉 respectively) have the same energy when Φext/Φ0 = 1/2, the two energy eigenstates (within
the Hilbert subspace spanned by |0〉 and |1〉) will be symmetric and antisymmetric superpositions
of |0〉 and |1〉. For small deviation from that degeneracy point, the energy separation of the two
eigenstates in the subspace will have the form E =

√
ε2 + ∆2, provided the decay of excited states

into lower levels can be ignored within the measuring time (so that we can ignore the broadening of
the energy levels). The quantity ε is now the asymmetry of the two excited states from degeneracy,
and can be controlled by Φ̃x. ∆ is the mixing between these two states and can be controlled by
Φext.

The experimental setup is shown in Fig. 5a, with parameters L = 240 pH, βL = 2.33, Ec ≡
e2/2C = 9.0mK, EL ≡ Φ2

0/2L = 645K, and EJ = 2πLIc/Φ0 = 76K. For a given value of barrier
height ∆U0 (at degeneracy point) and externally applied flux Φext, they prepare the system in the
lowest state |i〉 at the left well, shine a milisecond pulse of 96GHz microwave onto the sample, and
use a dc-SQUID to measure the change of flux state of the sample after microwave pulse is off. If the
energy of |i〉 plus photon matches that of either one of the two excited states, denoted by |0〉 and
|1〉, the photon will be absorbed. Due to mixing, the system can now make a interwell transition,
which can be detected by the dc-SQUID. They vary the value of Φext and determine the probability
of interwell transition Pswitch as a function of external flux Φext; see Fig. 5b for experimental data.
They repeat the whole procedure for different values of barrier height. They verify the energy-level
anticrossing, which is an indication of symmetric and anti-symmetric superpositions of the two excited
states at degenerate point; see Fig. 5c. They also estimate the two states differ in flux by more than
Φ0/4 and in current by 2-3µA, which, in their experimental setup, corresponds to magnetic moment
of order 1010µB. Hence, they have demonstrated a superposition of macroscopically different states.

B. The Deft experiment

They use a low-self-conductance (L so small that we can neglect the contribution from 1/2LI2,
and Φ ≈ Φext) superconducting loop with three junctions [9], two having the same EJ and the third
one E ′

J .From Eq. 17, we have
γ1 + γ2 + γ3 = 2πΦext/Φ0 (22)
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FIG. 6: The contour plot of U(γ1, γ2) as in Eq. (21) with E′
J/EJ = 0.75 and Φext/Φ0 = 0.495.

Thus the “potential” energy term becomes

U = −EJ cos γ1 − EJ cos γ2 − E ′
J cos(2πΦext/Φ0 − γ1 − γ2). (23)

We plot the potential contours in Fig. 6 with Φext/Φ0 = 0.495 and E ′
J/EJ = 0.75. We see that

U(γ1, γ2) is periodic in 2π and that there is a double-well in a small neighborhood of (0, 0). Again,
in the experiment of the Deft group, they demonstrated the anti-crossing of the energy level of this
approximate two-level system.

Fig. 7a shows the experimental setup: a three-junction SQUID sample measured by a dc-SQUID
with bias current (Ibias) flowing through. The energy levels near half flux quantum is shown in
Fig. 7b. At a fixed frequency of the microwave applied to the sample, they ramp the bias current
through the dc-SQUID, in which the circulating current produces a flux through the inner loop, and
measure the switching current Isw, at which a voltage V builds up across the bias current flow in
the dc-SQUID. The microwave induces transition between the two levels in the two wells, and a
peak or dip in the switching current indicates such transition; see Fig. 7c. They confirm the level
anticrossing as shown in the plot of resonance microwave frequency versus the difference of external
fluxes at resonance; see Fig. 7d. The two states in their experiment differ in flux by 10−3Φ0, which
corresponds to a magnetic moment of order 104 − 105µB.

We emphasize again that the fact that Bz can be controlled by Φ̃x and Bx by Φext is valid in
the neighborhood of the degeneracy point, and Bz and Bx depend, in general, on both Φ̃x and Φext,
which makes the manipulation of single flux qubit over a broad range of control parameters more
intricate than of single charge qubit.

V. A HYBRID DESIGN AND EXPERIMENT

The Quantronics Group in France recently develops a hybrid design [10] of superconduct-
ing qubit by combining the designs of charge and flux qubits, as can be seen from the cen-
tral part of Fig. 8 that the left half of the circuit consists of a Cooper pair box connected two
a three-junction flux qubit on the right half. They call the qubit part “quantronium”. Also
shown in the figure are the preparation and readout devices. They demonstrate that the ra-
tio of decoherence time to single gate operation time is about 8,000, which is of the same or-
der as the minimum threshold 104 required in order for quantum error correction to work [11].
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FIG. 7: The Delft experiment.

FIG. 8: Quantronium: a hybrid design of qubit.

In their experiment, the Josephson coupling en-
ergy is of the same order of charging energy,
EJ

∼= EC , and neither the pair number n nor the
phase Θ is a good quantum number. Their sam-
ple operates at an intermediate regime, and the
approximation that we use to derive the approx-
imate two-level Hamiltonian in charge qubits
does not apply here. However, when the temper-
ature is low enough and the superconductor gap
energy is the largest energy scale, the system is
suitably described by the few lowest states. But
how many lowest states should be kept certainly
depends on the detail of energy splittings. If the
condition is such that the lowest two states, de-
noted by |0〉 and |1〉 respectively, are sufficient (as is assumed here in the experiment), the resulting
truncated Hamiltonian will be equvialent to that of a spin-1/2 system.

Despite the unjustified assumption, they observe microwave induced oscillations (usually called
Rabi oscillations) between the two levels and Ramsey fringe (which tells us the coherence time Tφ);
see Fig. 9. Their results indicate they can perform 8000 coherent free precession turns within a
period of Tφ.

VI. CONCLUDING REMARKS

The most important and most difficult task in realizing quantum information processing is to
overcome decoherence. There are many contributions of decoherence. First of all, since the super-
conducting qubits we’ve discussed so far are only approximate two-level systems, coupling to higher
level causes the leakage of information from the approximate two-level subspace. It will be interesting
and of great importance to know the quantitative working conditions for experimental parameters
such that the errors can still be tolerated within the technique of quantum error correction. Much
more complicated contributions come from coupling to the environment. Charge qubits are suscepti-
ble to fluctuations from the voltage sources, fluctuations of the externally controlled flux, background
charge noise, and measurement backaction. On the other hand, flux qubits are susceptible to back-
ground magnetic field fluctuations, nuclear spins in the substrate, unwanted magnetic dipole-dipole
coupling, fluctuations in the external flux-supplying circuit, and measurement backaction. Identify-

10



FIG. 9: The Quantronics group’s experimental results: (a) Rabi oscillations (b) The Ramsey fringe experi-
ment.

ing, analysizing, and reducing the dominant dephasing effects will be a crucial step toward quantum
computation[12].

The measurement device is itself a quantum mechanical system, which couples to the quantum
bits under study. This process should be described by quantum mechanics itself. For the purpose of
state readout, the measuring apparatus, after coupling with the qubit for a certain duration, should
be able to tell us the information about the state. This reflects in the probability evolution that
there should be a period of time, in which there are two distinct peaks. For more detail, see, e.g.,
Ref. [12] for the case of a single electron transistor used to readout a charge qubit.

We have seen, in this Paper, several proposals for designing superconducting qubits and some
verifications and demonstrations for the coherent superposition and control of single qubit states.
The next exciting step is to demonstrate the controllability of two-qubit operations. Several schemes
for coupling charge and flux qubits have been proposed [12–14]. Conceivably, theoretical analysis of
decoherence and optimal coupling schemes and experimental realization of controllable inter-qubit
interactions will be more difficult than those of single qubit, and require more thorough investigation.
Achieving controlled inter-qubit operations will be a huge step torward realizing quantum computers.
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