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A quantum system can undergo a continuous phase transition (QPT) at the ab-

solute zero of temperature as some parameters entering its Hamiltonian are varied.

These transitions are particularly interesting for, in contrast to their classical finite-

temperature counterparts, their dynamic and static critical behaviors are intimately

intertwined. Considerable insight is gained by considering the path-integral descrip-

tion of the quantum statistical mechanics of a system in which time appears as

an extra dimension. In particular, this allows the deduction of scaling forms for

the finite-temperature behavior, which turns out to be described by the theory of

finite-size scaling. In this essay, 1 dimensional Ising chain is studied as an exam-

ple for QPTs. Then I briefly described QPTs in quantum hall effects and high Tc

superconductors.

I. INTRODUCTION

Nature abounds with phase transitions. Usually they are classified as first order or second

order. The usual argument for phase transition is based on free energy.[1] Phase transitions

occur when the ground states of free energy are different for different temperatures.

Here I will describe a new kind of phase transitions– Quantum Phase Transition, which

occurs at the absolute zero of temperature. Here the ground states vary as varying some

coupling constants. Let us suppose that, for a given coupling constants g, which can be

pressure, composition or magnetic field strength, etc[4], we have obtained the energy levels

of the system: that is, we know the configuration that minimizes the energy, the configuration

that corresponds to the first excited state of the system etc. We can plot the energy levels

respecting to the coupling constant g (FIG 1).

If the first excited level crosses the ground level at a coupling constant gc (FIG. 1), we
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FIG. 1: Zero temperature phase transition by level crossing.

can expect a phase transition occurs when we tune the coupling constant g through this

point. This kind of phase transitions is termed as Quantum Phase Transition. At the exact

point of gc, the state is decided by the initial conditions. Then why do we interested in this

phenomena in absolute zero, which is impossible to happen in nature? Because associated

with this critical point of phase transition, a particular region, known as quantum critical

region, demonstrates some novel and deep properties, which hold the key to understanding

a wide range of behaviors in many condensed-matter systems.

II. QUANTUM STATISTICAL MECHANICS

In quantum statistics, the most interesting thing is the partition function of the system,

which is governed by a Hamiltonian H [5, 6],

Z(β) = Tre−βH (1)

The expectation of an arbitrary operator O is

< O >=
1

Z(β)
Tr(Oe−βH) (2)

where kBT = 1/β. Notice that the operator density operator eβH is the same as the time-

evolution operator eiHT /h̄, provided we assign the imaginary value T = −ih̄β to the time

interval over which the system evolves. Thus we see that calculating the thermodynamics

of a quantum system is the same as calculating transition amplitudes for its evolution in

imaginary time, with the total time interval fixed by the temperature of interest. Then the

Feynman’s path-integral formulation of quantum mechanics can be used. Formally,

e−βH = [e−(1/h̄)δτH ]N (3)
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where δτ is a time interval that is small on the time scales of interest (δτ = h̄/Γ, where Γ

is some ultraviolet cutoff) and N is a large integer chosen so that Nδτ = h̄β. Then

Z(β) =
∑
n

∑
m1,m2,···,mN

< n|e−(1/h̄)δτH |m1 >

× < m1|e−(1/h̄)δτH |m2 > × < m2| · · · |mN >

× < mN |e−(1/h̄)δτH |n > (4)

Then we can treat temperature as another dimension. This treatment is exact when T → 0

and this extra ”time” direction diverges. In this way, we can mapping a d dimensional

quantum system into a d + 1 dimensional classical system. It is clearer in Table I.

Quantum Classical

d space, 1 time dimensions d + 1 space dimensions

Coupling Constant g Temperature T

Inverse temperature β Finite size Lτ in ”time” direction

Correlation length ξ Correlation length ξ

Inverse characteristic energy h̄/∆,h̄/kBTc Correlation length in the ”time” direction ξτ

TABLE I: Mapping in the statistics[6]

III. QUANTUM ISING CHAIN IN A TRANSVERSE FIELD

Most of the important concepts in QPT arise from the 1 dimensional Ising model. [2, 3]

And results of this model are believed to be exact. So it is worthwhile to review it more

carefully.

The Hamiltonian of 1 dimensional Ising model is

HI = −J
∑

i

(gσ̂x
i + σ̂z

i σ̂
z
i+1) (5)

The quantum-classical mapping ensures that this transition will be in the universality class

of the D = 2 classical Ising model, which is extensively studied.

Firstly, let us analyze the limit situation in T = 0.

Strong coupling: g À 1 the ground state is simply ferromagnetic state.

|0〉 =
∏

i

|→〉i (6)
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where |→〉i and |←〉i are eigenstates of σ̂x
i with eigenvalues ±1.

|→〉i =
1√
2

(|↑〉i + |↓〉i)

|←〉i =
1√
2

(|↑〉i − |↓〉i) (7)

where |↑〉i and |↓〉i are eigenstates of σ̂z
i with eigenvalues ±1.

The first excited states are

|i〉 = |←〉i
∏

j 6=i

|→〉j (8)

Weak coupling: g ¿ 1 At g = 0, there are two degenerate ground states.

|↑〉 =
∏

i

|↑〉i (9)

|↓〉 =
∏

i

|↓〉i (10)

The real state will be the linear superposition of these two states. It is the so-called

quantum paramagnetic state.

The excited states can be described in terms of an elementary domain wall (or kink)

excitation. For instance the state

· · · |↑〉i |↑〉i+1 |↓〉i+2 |↓〉i+3 |↓〉i+4 |↑〉i+5 |↑〉i+6 · · ·

Intermediate coupling The first excited states has the energy

εk = 2J(1 + g2 − 2g cos k)1/2 (11)

The energy gap is |∆|
∆ = 2J(1− g) (12)

In two limits, the ground states are different. Obviously there is a quantum phase tran-

sition at some crossover point gc. From Eq. 12 we can find gc = 1.

we can plot the phase diagram as Fig2. In this diagram, we have two energy scale in

this diagram, ∆ and T (set kB = 1). We can regard them as quantum scale and thermal

dynamical scale, respectively. In Regions A,B, T ¿ ∆, both systems can be treated as

the classical systems although the ∆ have different structure for each region, i.e., they have

different quasi-particles. In TableII, we can find they have the same dynamics characters,
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FIG. 2: Phase diagram of Ising Chain

A: Low T on the Magnetically Ordered Side, ∆ > 0,T ¿ ∆

B: Low T on the Quantum Paramagnetic Side, ∆ < 0,T ¿ ∆

C: Continuum High T, T À ∆

D: Lattice High T, T À J The properties in this region are nonuniversal and determined by the

lattice scale Hamiltonian.

their phase coherence times share the same structure. However, Region C, Continuum high-

T, has completely different properties about correlation length and correlation time. The

relaxation procession here are completely quantum. We cannot account it by the classical

explanation. (see Fig3) In order to get the properties of this region, we need so-called

”continuum quantum field theory”.

IV. QPTS IN OTHER SYSTEMS

Besides 1 dimensional Ising chain, there are a lot of systems have QPTs.

Quantum Hall Effect The two-dimensional electron gas in semiconductor heterostruc-

tures has a very rich phase diagram with a large number of quantum phase transitions.

[2] Consider a particular class of transitions that are relevant to QPTs. The electronic

spins in one layer are fully polarized in the direction of external field in ground state.

If we bring two layers close to each other. For large layer spacing, the two layers
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Low-T Continuum high-T Low-T

(magnetically ordered). (quantum critical) (quantum paramagnet).
Quasi-classical

particles-domain walls

Quasi-Classical

particles-flipped spins

ξ
(

πc2

2∆T

)1/2
e∆/T 4c

πT
c
|∆|

τφ
π
2T e∆/T cot(π/16)

2T
π
2T e∆/T

TABLE II: Correlation length, ξ(defined from the exponential decay of the equal-time correlations

of the order parameter), and the phase coherence time, τφ, in the different regimes of Fig2. The

two low-T regimes have an interpretation in terms of quasi-classical particles, but the physical

interpretation of the two particles are very different, as indicated.[2]

A:Low T (magnetically ordered)

Classical relaxation ”Ordered” Critical
-

∆1/τφ0 ω

C:Continuum high T (quantum critical)

Quantum relaxation Critical
-

1/τφ0 ω

B:Low T (quantum paramagnetic)

Classical relaxation Gapped paramagnetic Critical
-

∆1/τφ0 ω

FIG. 3: Crossover as a function of frequency for the Ising model in the different regime of Fig2

will have their ferromagnetic moments both aligned in the direction of the applied

field. While for smaller spacings, there turns out to be a substantial antiferromagnetic

exchange between the two layers, so ground state eventually becomes a spin singlet,

created by a bonding of electrons in opposite layers into spin singlet pairs. There is a
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quantum phase transition between these two states.

High Tc Superconductor Considering the high Tc superconductor materials

La1.85Sr0.15CuO4. [2, 4] The parent compounds of it is an insulator La2CuO4.

Each copper ion has a single unpaired electron, and has total spin S = 1/2. The

interactions between the electrons are antiferromagnetic and the ground state is a

”Néel” state, in which the spins are polarized in opposite orientations on the two

checherboard sublattices of the square lattice. The strontium ion has one less electron

to donate to the copper oxide layers than lanthanum, so the effect of doping is to

introduce ”holes” into the square-lattice antiferromagnet. Experiments demonstrated

that holes tend to concentrate in ”stripes”. Imagine that the spins in the hold-poor

regions interact with their nearest neighbours by an antiferromagnetic exchange of

energy J , and that the spins at the boundaries of two neighbouring regions are

coupled by a weaker exchange of magnitude λJ , where 0 ≤ λ ≤ 1. At λ = 1, this

model reverts to the ordinary square lattice S = 1/2 antiferromagnet and its ground

state exhibits long-range magnetic order. While ground state for λ ¿ 1 is a quantum

paramagnet state. Then a quantum phase transition must occur for an intermediate

λ.

One thing I should point out is that, in most cases, the boundary between A and C is the

real phase boundary, while there is no real phase transition between B and C.

V. SUMMARY

We have a generic picture for quantum phase transition like Fig4. The C region exhibits

novel properties that we are far from fully understanding. Using the continuum quantum

field theory (CQFT), we can get some results, such as correlation length and time, the scale

relation about it, which comes after renormalization and I do not understand. Surely the

study on these properties will help us to understanding behaviors of condensed matter more

deeply.
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FIG. 4: Generic phase diagram
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