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Abstract

Symmetry breaking ground states occur in quantum Hall effect (QHE) systems
when two or more Landau levels become degenerate near the Fermi level. Isotropic,
easy-axis or easy plane quantum Hall ferromagnets (QHF) can form depending on
the pseudospins of the involved Landau levels consisting of real spin, orbit radius
quantum number, subband index or growth direction. Theories based on Hartree-Fock
calculation of pseudospin anisotropy energy are introduced, which classify the type of
QHFs according to the nature of the degenerate Landau levels. Several representative
experimental studies on the emergence of integer QHF in single-layer and double-
layer two dimensional electron systems as well as of fractional QHF are presented. The
anisotropy types are identified from the experimental measurements and compared with
the prediction from the Hartree-Fock calculation. Discrepancy arises when neglected
factors in the simple theoretical model become significant such as charge distribution
profiles of different subbands, orbital effect of the in-plane magnetic field, softness of
the barrier etc.
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1 Introduction

Two dimension electron gas under a strong magnetic field is grouped into equally spaced
energy levels known as Landau levels (LLs) with spacing ∆E = h̄ωc = h̄eB/m∗c. Each LL
has a degeneracy NΦ = AB/Φ0, where A is the system area and Φ0 is the magnetic flux
quantum Φ0 = e/hc. When the total number of electrons N is such that the filling factor
µ = N/NΦ takes an integer or certain fractional values, quantum hall effects (QHE) occurs,
characterized by a vanishing longitudinal resistance and a quantized transverse resistance.
QHE provides a rich playground to study the many-particle collective phenomena, among
which quantum Hall ferromagnetism (QHF) is a rather intriguing one and many exotic
behaviors have been observed in experiments over different systems (1; 2; 3; 4; 5; 6).

When two LLs are brought to close affinity near the Fermi level and become nearly
degenerate, e.g. by a tilted magnetic field in a single layer system, the competition of
electrostatic energy and exchange energy leads the system to either isotropic, easy-axis or
easy-plane ferromagnets (1; 7). Easy-axis (Ising) ferromagnets are systems with discrete
directions along which the ordered states is energetically favored. for example, in the case
of two degenerate LLs, if the exchange energy inside the same LL is stronger than that
between different LLs, the total energy becomes lower if one of these aligned LLs is filled
while the other one is left empty. The features of easy-axis anisotropy include long-range
order at finite temperatures and Ising-like phase transitions. In contrast, easy-plane (XY)
ferromagnets have a continuous set of pseudospin orientations in the plane, and the ordered
states along any of them is an energy minimum. Due to the energy equality of these states,
long-range order is absent while Kosterlitz-Thouless phase transition is possible at finite
temperature. When there is no preferred direction for alignment to minimize the energy, the
ferromagnets become isotropic and all possible directions of pseudospin have equal energy
and there will be neither long-range order nor finite-temperature transition.

In this paper, a theoretical model based on Hartree-Fock calculation of pseudospin
anisotropy energy is presented in Sec. 2, which predict the class of QHF systems with
different pairs of crossing LLs. Then in Sec. 3, several recent experiments of QHF in single-
layer, double-layer and fractional systems are reviewed, and the focus is laid upon the origin
of spontaneous symmetry breaking of the ground state and the observed exotic behaviors
related to the specific anisotropic class. Theoretical predictions are compared with experi-
mental results and the limitation of the ideal-geometry HF model is discussed.

2 Theory of QHF classification

In the section, theories based on HF calculation of pseudospin anisotropy energy are presented(1;
7), which help understand how the competition between electrostatic and exchange energies
determine the sign of the anisotropy energy and lead to easy-axis or easy-plane QHFs. For
simplicity, it is assumed that only two LLs are nearly degenerate and the number of electrons
is only enough to fill one of them.
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2.1 Pseudospin orientation and anisotropy energy

Depending on the nature of the crossing LLs near the Fermi level, the pseudospin quantum
number can involve degrees of freedom such as the real spins s, the orbital radius quantum
number n, the subband index in a wide quantum well or the layer index of double or multiple
quantum well ξ. Define the electronic states in the two involved LLs as pseudospin-up state
| ↑〉 and pseudospin-down | ↓〉 state and in a pseudospin language(1; 8), the Hamiltonian of
the system can be expressed as

H = −bσ(~q = 0) +
1

2A

∑
~q

{Vρ,ρ(~q)ρ(−~q)ρ(~q) + Vσ,σ(~q)σ(−~q)σ(~q)

+Vρ,σ(~q) [ρ(−~q)σ(~q) + σ(−~q)ρ(~q)]} (1)

where ρ(~q) and σ(~q) are the sum and difference operators projected onto up and down states
and Vss′ are the corresponding effective interactions. b is the half of the s ingle particle energy
separation of the nearly degenerate LL’s.

Assume that the many-particle ground state is fully polarized along direction n̂ =
(sin θ cos φ, sin θ sin φ, cos θ) and can be described by the single Slater determinant wave
function (1):

|Φn̂〉 =

NΦ∏
m=1

c+
m,n̂|0〉, (2)

where m is the orbital index within a LL. The energy of the ground state can be estimated
by EGS = 〈Ψn̂|H|Ψn̂〉/N . By mapping the wave function and Hamiltonian onto the space
spanned by the pseudospins and keeping only those terms dependent of the pseudospin
orientations, we get the ground state energy(1):

EGS = −(b− Uρ,σ) cos θ +
Uσσ

2
cos2 θ

Us,s′ =

∫
d~q

(2π)2
[Vs,s′(~q = 0)− Vs,s′(~q)] exp(−q2l2/2), (3)

where l =
√

h̄c/eB is the magnetic length. Let us have a close look of the terms involved in
the ground state energy:

1. The effective symmetry breaking field b∗ = b − Uρ,σ include both external and
internal components. b in general includes external bias potential (∆V ), tunneling bar-
rier energy (∆t), LL spacing (h̄ωc), Zeeman splitting energy (g∗µBB) and contributions
from lower lying LL’s (I0), depending on the nature of the two crossing LL’s. Uρ,σ,
determined from Vρ,σ = (V↑,↑ − V↓,↓)/4, is the contribution to the symmetry-breaking
field resulting from the Coulomb interaction difference of electrons in the two LLs.

2. The sign of the anisotropic energy Uσ,σ is determined from Vσ,σ = (V↑,↑ + V↓,↓ −
2V↓,↑)/4 and consists of two competing terms. The electrostatic Coulomb interaction
Vσ,σ(~q = 0) is non-vanishing when the two pseudospins have different charge density
distribution perpendicular to the electron plane. This term is usually orientation-
independent, and thus favors easy-plane anisotropy. Vσ,σ(~q) is the exchange penalty
for flipping the pseudospin orientation and thus favors easy-axis anisotropy.
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3. The pseudospin orientation can be determined by minimizing EGS in Eqn.(3) and
is plotted as a function of the dimensionless field u = b∗/|Uσ,σ| at positive and negative
Uσ,σ respectively in Fig. 1. When Uσ,σ > 0, the pseudospin changes continuously with
the field when |u| < 1 and reached alignment at u > 1 (θ = 0) or u < −1 (θ = π).
Since EGS is independent of in-plane angle φ, according to our definition in Sec.1, this
case corresponds to easy-plane anisotropy. When Uσ,σ < 0, there is two energetically
unequal local minimum at θ = 0 and θ = π, which results in easy-axis anisotropy.
If a barrier separate these two states, hysteric behavior will appear when swapping
the field upward and downward. A situation not shown in Fig. 1 is when Uσ,σ = 0,
which correspond to spontaneous symmetry breaking to an isotropic state in absence
of effective field b∗.
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u=b*/|Uσ,σ|
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0

1
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Uσ,σ > 0,  easy plane

Uσ,σ < 0,  easy axis

Uσ,σ < 0,  easy axis

Figure 1: The value of cos θ that minimize the ground state energy in Eqn.(3) as a function
of the dimensionless field u = b∗/|Uσ,σ| for Uσ,σ > 0 (i.e.easy-plane anisotropy, dashed line) and
Uσ,σ < 0 (i.e. easy-axis anisotropy, solid line) cases. Also shown is the schematics of corresponding
pseudospin orientation.

A more complete description of the many-body Hamiltonian and HF total energy can
be found in Ref.(7), with detailed derivation of pseudospin matrix elements of Coulomb
interaction for different situations of LL’s crossing. Since the spirit of the anisotropy energy
calculation is the same, I won’t repeat the lengthy derivations here but instead use the their
conclusions about the classification of QHF types for particular pairs of crossing LLs in the
following.

2.2 Classification of QHFs

The nature of the LL’s crossing can be represented by the a set of quantum number {ξ1,2, s1,2, n1,2},
which are the subband index, spin index and orbital radius quantum number of the two pseu-
dospin states respectively, determined by the system geometry and external conditions. The
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HF anisotropy energy calculation (7) is carried out in an idealized system consisting of two
nearby infinitely narrow 2D layers separated by a distance d. With a tunneling barrier ∆t

and external bias ∆V , the single-particle of quantum numbers {ξ = ±1, s = ±1/2, n} can be
expressed as :

Eξ,n,s = −ξ

2
(∆2

V + ∆2
t )

1/2 + h̄ωc(n +
1

2
)− s|g|µBB (4)

Quantum hall ferromagnetism occurs when two LLs are brought to nearly alignment.
Define the two levels as pseudospin up | ↑〉 and pseudospin down | ↓〉, and a state with
the pseudospin oriented to a direction m̂ = (sin θ cos φ, sin θ sin φ, cos θ) can be mapped onto
them as:

|m̂〉 = cos

(
θ

2

)
| ↑〉+ sin

(
θ

2

)
eiφ| ↓〉. (5)

The pseudospin orientation of the ground state is determined by minimizing the HF ground
state energy (7):

EHF (m̂) = 〈m̂|H|m̂〉/N =
∑

i=x,y,z

b∗mi +
1

2

∑
i,j=x,y,z

Ui,jmimj (6)

and the type of QHF is determined by the sign of the anisotropy energy Ui,j, which in turn
depends on the nature of the nearly degenerate LLs.

2.2.1 Two LLs within the same subband: ξ1 = ξ2

Within the same subbands, the two nearly aligned LLs must have opposite real spins be-
cause LLs with same real spin are always separated by multiples of h̄ωc. Since the charge
distributions of these two pseudospns only differ in the plane, the electrostatic terms vanish
and the only nonzero contribution to the anisotropy energy (7) is from the exchange energy:

Uz,z = −1

8

∫ ∞

0

dqe−q2/2[Ln1(q
2/2)− Ln2(q

2/2)]2[(1 + r2
∆) + (1− r2

∆)e−dq] (7)

where Ln(x) is the Laguerre polynomial and r∆ = ∆V /(∆2
V + ∆2

t )
1/2. When the orbital

radius quantum numbers are the same (n1 = n2), Uz,z = 0 and the QHF state is isotropic.
Since the only different quantum number of the two pseudospins is the sign of real spins, the
isotropic anisotropy indicate the independence of the Coulomb interaction on real spins. One
example is n1 = n2 = 0 and r∆ = 1 (i.e. ∆t →∞, no tunneling), which is reduced to the well
studied single-layer isotropic ν = 1 QHFs (9). By techniques such as tilted magnetic fields,
the Zeeman splitting (∼ |Btot|) can be made larger than the cyclotron energy h̄ω(∼ Bz) and
n1 6= n2 can be realized. In that case, Uz,z is always negative in Eqn. (7) and results in
easy-axis anisotropy. Again when r∆ = 1, it reduces to a single-layer 2D system, which will
be illustrated in Sec. 3.

2.2.2 Two LLs in different subbands: ξ1 6= ξ2

There are more possible combinations of different quantum numbers when the involved two
LLs have different subband indices ξ1 6= ξ2. First, let’s look at the case that the orbital
radius quantum number n1 = n2.
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1. n1 = n2

(a) Since the two LLs are from different subbands (layers), their real spins can be
same of opposite. If s1 = s2, the only nonzero anisotropy energy terms and the
HF energy in the absence of effective symmetry-breaking fields are (7):

Uz,z = ur2
∆; Ux,x = u(1− r2

∆)

Ux,z = Uz,x = (Uz,zUx,x)
1/2

EHF =
∑

i,j=x,y,z

Ui,jmimj = u[r∆mz + (1− r2
∆)1/2mx] (8)

where u is a positive constant. It’s easy to see that the HF energy EHF is mini-
mized to zero by condensing the pseudospins onto the plane tilted from the X−Y
plane by an angle cos−1r∆, leading to easy-plane anisotropy, i.e. interlayer coher-
ence.

(b) If the two LLs have opposite spins, s1 = −s2, then Ux,x, Ux,z and Uz,x all van-
ish because they involve pseudospin non-conserving scattering processes. Since
Uz,z = ur2

∆ ≥ 0, the system is isotropic when r∆ = 0 (i.e. no bias) and easy-
plane otherwise. Note that ξ1,2 could be the indices of two separated layers in a
double-quantum-well 2D system (3) or of two layers separated by a soft barrier
in a wide single-quantum well (4). In the latter case, ∆t also depends on the
pseudospin orientation as will be shown in Sec. 3, and first-principle calculation
shows that easy-axis and easy-plane QHF are favored at low and high electron
density respectively (4).

2. n1 6= n2

Finally, let’s look at the case that ξ1 6= ξ2 and n1 6= n2.

(a) When s1 = s2, the only non-vanishing anisotropy energy terms are Uz,z and
Uy,y = Ux,x, all as functions of the layer separation d and r∆. The HF total
energy can be written as (7):

EHF =
∑

i,j=x,y,z

Ui,jmimj = (Uz,z − Ux,x)m
2
z + Ux,x, (9)

thus the QHF will have easy-plane anisotropy when Uz,z −Ux,x > 0 and easy-axis
anisotropy when Uz,z −Ux,x > 0. When the layer separation takes a critical value
d∗ so that Uz,z − Ux,x = 0, the QHF is isotropic.

(b) Again, when s1 6= s2, only Uz,z remains nonzero and the type of the QHF is
determined by the sign of Uz,z at particular d and r∆.

One important message here is that when the subband wave functions are different, the
pseudospin anisotropy can be vary in the r∆ − d plane. Thus phase transitions between
QHFs are possible by carefully tuning the external parameters (7).
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3 Experiments on quantum Hall ferromagnetism

In this section, I will review several representative experiments on QHF in different systems,
including single-layer and bilayer quantum well systems and fractional systems. Exotic phe-
nomena related to the easy-axis and easy-plane QHF, such as unusual magnetotrasnport
observations, anomalous temperature dependence of longitudinal resistance etc. are pre-
sented. Physical origins for the emergence of the pseudospin anisotropy are discussed and
compared with theories presented in Sec. 2. Experimental setup and realization of LL
degeneracy (crossing) by adjusting control parameters are also mentioned.

3.1 Single-layer 2D electron system

Measurements of integer quantum Hall effect in single-layer 2D electron system is carried
out in a 43nm wide unbalance GaAs quantum well at T=300mK (1). The tilted magnetic
field technique is used to align two LLs with opposite spins at even filling number ν = 2, 4
(see Fig. 2). The pseudospin are {ξ1 = ξ2, s1 = −s2, n1 6= n2} and according to results in
Sec. 2.2.1 both cases should result in easy-axis anisotropy QHF.

Figure 2: The anisotropy energy Uσ,σ (see definition in Sec. 2.1) by LDA calculation as a function
of the tilted angle α for ν = 2 and ν = 4. Also shown are the density profiles for up (dashed line)
and down (solid line) pseudospin orbitals at large α (1).

Indeed, in the experiments, the ν = 4 quantum Hall effect, i. e. the minimum of
longitudinal resistance is lost near the predicted tilting angle α = 79◦ at which the two
involved LLs become degenerate, which can be associated with the easy-axis anisotropy(1).
This is in agreement with the LDA calculated anisotropy energy Uσ,σ for ν = 4 in Fig. 2,
which is only weakly dependent of α and always negative, i. e. favoring easy-axis anisotropy.
However, for ν = 2, no loss of quantum Hall effect is observed around the predicted tilting
angle α = 75◦ of LLs alignment, consistent with the easy-plane anisotropy. This is also
confirmed from the positive value of Uσ,σ for ν = 2 at large α in Fig. 2. The discrepancy
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with theory in Sec. 2.2.1 is due to the fact in Eqn.(7) a zero-width quantum well model is
assumed. In a finite width quantum well, the orbital effect of the in-plane magnetic field and
the electrostatic contribution from the different charge density profile of the two LLs can’t
be neglected and thus the sign of Uσ,σ depends not only on the system geometry but also
the tilting angle and the filling factor. That explains why different QHF behavior occurs for
ν = 2 and ν = 4 , even their pseudospin configuration fall in the same category.

3.2 Double-layer 2D electron system

Now let us turn to the case of double-layer systems, i.e. ξ1 6= ξ2. This can be realized
a double quantum well, a wide unbalance single quantum well or a thin symmetric single
quantum well , as illustrated by the following examples. As we shall see, different types of
QHF occur due to the different geometry and nature of electron-electron interaction.

3.2.1 Example 1: phase transition in ν = 2 double quantum well

The sample consists of two modulation doped GaAs quantum wells of width of 20nm sep-
arated by an Al0.3Ga0.7As barriers of thickness 3.1nm (3). A magnetic field B ≤ 13.5T is
applied perpendicular to the electron layer. The total electron density nt and the front-back
density different nf − nb are controlled independently by adjusting the gate voltage at the
front and back gate electrodes.

The transverse Hall resistance and the activation energy are measured at different electron
density difference nf − nb and total density nt. It is concluded that the ν = 2 QH state
undergoes a phase transition from a compound (spin polarized) state to a coherent state
(unpolarized) when nt decreases or |nf − nb|/nt increases.

The emergence of the coherence state at ν = 2 is explained by dominance of the interlayer
Coulomb interaction over the intralayer Coulomb interaction, which enhance the interlayer
correlation and support coherence state. In a pseudospin language, the up and down pseu-
dospins belong to different layers and when ν = 2, the real spins of the two LLs are of opposite
sign. Comparing with theory in Sec. 2.2.2, the experimental observation agrees with the
prediction of easy-plane pseudospin QHF for the case ξ1 6= ξ2, n1 = n2(= 0), s1 = −s2.

3.2.2 Example 2: First-order phase transition in ν = 2, 4 single quantum well

The sample is a 60 nm wide gallium arsenide quantum well under a perpendicular magnetic
field (4). An electric field is applied across the sample through the evaporated gate electrode
to change the electron density and the energy separating of the involved LLs so that different
pairs of LLs can be aligned. The difference from the double quantum well in example 1 is
that here we have a wide single quantum well and the two “layers” are separated by a soft
barrier originating from the Coulomb interactions among electrons in the quantum well.
Here “layer” indices are used to indicate LLs that occupies dominantly the left or the right
side of the well.

Transverse resistivity for ν = 2 and ν = 4 are measured and the suppression of quantum
Hall effect is observed when two LLs from different “layers” are aligned at the Fermi level
(see Fig. 3). This is found to be strongly correlated with the appearance of hysteresis in ρxx
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Figure 3: (a) LDA calculation of energy spectrum of ν = 4 at Vg = −0.164 V, where the two LLs
{L, n = 1, s =↑} and {R,n = 0, s =↓} are aligned (typos in the original figure ?). Circles and
dashed lines indicate occupied and empty states. Inset show LDA quantum well profile and wave
functions. (b) Longitudinal resistivity ρxx as a function of magnetic field at ν = 4 at T = 330 mK
shows the disappearance of Quantum Hall states (marked by arrows) (4). Similar phenomena are
observed for the case of ν = 2.

when the magnetic field is swept up and down. The hysteresis disappears at about 1K and
the measured temperature dependence of the hysteric behavior indicate the characteristic
energy is about the scale of the electron-electron interaction(4).

The appearance of hysteresis is attributed to occurrence of easy-axis (Ising-like) QHF,
which imposes an energy barrier to flip the pseudospin, causing a first-order phase transition
between oppositely polarized (θ = 0, π) ground states. Notice that theory predict a isotropic
QHF for a bilayer system with a rigid tunneling barrier for the case of ξ1 6= ξ2, n1 = n2, s1 =
−s2, when the two LLs are aligned (r∆ = 0). However, in the experiments, ν = 2 state turns
out to be of easy-axis anisotropy just as ν = 4 state. The difference is caused by the softness
of the barrier separating left and right “layers”. LDA calculation predicts that at sufficiently
high electron density, the tunneling gap between the filled state and the empty state at the
Fermi level is enhanced and it becomes energetically more favorable for the system to behave
like an Ising ferromagnet. For odd filling factor, experiments observation agrees with the
easy-plane QHF just as predicted by theory for the case ξ1 6= ξ2, n1 = n2, s1 = s2.

3.2.3 Example 3: easy-axis and easy-plane QHF in a symmetric quantum well

The experiment is performed on a 40nm wide GaAs single-quantum well (6). The charge
density ns is varied by the front and back gate to make the LL crossing occur at desired
filling factor while the quantum well potential is always kept symmetric. In this case, the
pseudospins of the involved LLs are either symmetric or antisymmetric about the quantum
well and are labeled by {ξ = S/A, n, s}. The corresponding wave function and energy
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spectrum are shown in Fig. 4 (a), (b). The energy difference of up and down pseudospins is:

∆Z =

[
|∆n| h̄e

m∗ + ∆s|g|µB −
(

∂∆SAS

∂ns

)
νe

h

]
(10)

where the energy separation of symmetric and anti-symmetric state ∆SAS decreases with
increasing ns. Since these two subbands are distinguished by their symmetry instead of by
the separation of a distance d as in the double quantum well case, the conclusions in Sec.2.2
cannot be applied directly.

Figure 4: (a)Calculated wave function and charge density distribution for the symmetric quantum
well. (b) LL energy diagram and level crossings at ν = 3, 4 are shown in the box. (c) Gray-scale
plot of Rxx at 50 mK. Dark regions represent small values of Rxx (6).

The transverse resistance Rxx is measured at different point in the ns, B space as shown
in Fig. 4(c). At ν = 3 region, where {S, 1, ↑} and {A, 0, ↑} are aligned and the quantum
Hall region evolves smoothly around the field where the two LLs cross (B ∼ 3.9T), implying
easy-plane anisotropy. This is explained by the fact that up and down pseudospin states have
symmetric and anti-symmetric charge distribution perpendicular to the electron plane and it
is energetically favorable to mix these two states and condense the pseudospin onto the X-Y
plane. In contrast, the center ν = 4 quantum Hall region jumps vertically, corresponding
to a easy-axis anisotropy. In this case, {S, 1, ↓} and {A, 0, ↑} are aligned and due to their
different sign of real spin, the exchange energy dominates and impose a penalty to flip the
pseudospin, resulting in either up or down magnetization.

3.3 Fractional system

Finally, I want to mention some recent experiments of QHF in a fractional quantum Hall
system (2; 5). The sample is a high-quality GaAs/AlGaAs heterostructure and hydrostatic
pressure about 10 Kbar is applied to study the evolution of ν = 2/5 quantum Hall state. At
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high pressure, the unpolarized state and polarized state compete with each other, leading to
a coexistence over a large range of pressure. These nearly degenerate states can be mapped
on to the pseudospin up and down sates and at certain pressure, the system is turned into
polarized state with the emergence of hysteric transport (see Fig. 5) and anomalous temporal
relaxation of the transverse resistivity (5), indicating easy-axis anisotropy. The theory in
Sec. 2 can be extended here in the fractional quantum hall regime under the composite
Fermion picture.

Figure 5: Magneto-resistance of a high-quality GaAs/AlGaAs heterostructure at 40 mK of tem-
perature under pressure near filling fraction ν = 2/5. Arrows indicate the sweep direction.

Summary

In this paper, theories and experiments on integer and fractional quantum Hall ferromagnets
are briefly reviewed. A theoretical model for quantum Hall ferromagnets based on Hartree-
Fock energy calculation is introduced and results about QHF classification are presented.
This model qualitatively explains the physical origin of the emergence of isotropic, easy-axis
and easy-plane anisotropy in QHFs. The predicted anisotropy types for different nature of
LL crossing agree with most experiments, while the discrepancy can be accounted for by
the neglected factors in the theoretical model such as the nature of the tunneling barrier,
coupling between the external field and internal degrees of freedoms etc. As suggested by
both theory and experiments, phase transitions from one type of QHF to another type can
be made possible by varying the external parameters.
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